forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhand3d.py
168 lines (128 loc) · 4.63 KB
/
hand3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import sys
import time
import numpy as np
import cv2
from PIL import Image
import ailia
# import original modules
sys.path.append('../../util')
from utils import get_base_parser, update_parser, get_savepath # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from webcamera_utils import get_capture, get_writer # noqa: E402
from detector_utils import load_image # noqa: E402
# logger
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT_PATH = 'hand_scoremap.onnx'
MODEL_PATH = 'hand_scoremap.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/hand3d/'
IMAGE_PATH = 'img.png'
SAVE_IMAGE_PATH = 'output.png'
IMAGE_HEIGHT = 240
IMAGE_WIDTH = 320
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('ColorHandPose3D model', IMAGE_PATH, SAVE_IMAGE_PATH)
args = update_parser(parser)
# ======================
# Main functions
# ======================
def preprocess(img):
img = np.array(Image.fromarray(img).resize(
(IMAGE_WIDTH, IMAGE_HEIGHT),
resample=Image.BILINEAR))
img = np.expand_dims((img.astype('float') / 255.0) - 0.5, axis=0)
return img
def recognize_from_image(net):
# input image loop
for image_path in args.input:
logger.info(image_path)
# prepare input data
img = load_image(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGB)
img = preprocess(img)
logger.debug(f'input image shape: {img.shape}')
net.set_input_shape(img.shape)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
total_time = 0
for i in range(args.benchmark_count):
start = int(round(time.time() * 1000))
output = net.predict(img)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
if i != 0:
total_time = total_time + (end - start)
logger.info(f'\taverage time {total_time / (args.benchmark_count - 1)} ms')
else:
output = net.predict(img)
hand_scoremap = output[0]
hand_scoremap = np.argmax(hand_scoremap, 2) * 128
savepath = get_savepath(args.savepath, image_path, ext='.png')
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, hand_scoremap)
logger.info('Script finished successfully.')
def recognize_from_video(net):
capture = get_capture(args.video)
save_h, save_w = IMAGE_HEIGHT, IMAGE_WIDTH
output_frame = np.zeros((save_h, save_w * 2, 3))
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
logger.warning(
'currently, video results cannot be output correctly...'
)
writer = get_writer(args.savepath, save_h, save_w * 2)
else:
writer = None
input_shape_set = False
frame_shown = False
while (True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = preprocess(img)
# predict
if (not input_shape_set):
net.set_input_shape(img.shape)
input_shape_set = True
output = net.predict(img)
hand_scoremap = output[0]
hand_scoremap = np.argmax(hand_scoremap, 2) * 128
res_img = hand_scoremap.astype("uint8")
res_img = cv2.cvtColor(res_img, cv2.COLOR_GRAY2BGR)
output_frame[:, save_w:save_w * 2, :] = res_img
output_frame[:, 0:save_w, :] = cv2.resize(frame, (IMAGE_WIDTH, IMAGE_HEIGHT))
output_frame = output_frame.astype("uint8")
cv2.imshow('frame', output_frame)
frame_shown = True
# save results
if writer is not None:
writer.write(output_frame)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
# net initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
if args.video is not None:
# video mode
recognize_from_video(net)
else:
# image mode
recognize_from_image(net)
if __name__ == '__main__':
main()