forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fcrn-depthprediction.py
153 lines (122 loc) · 4.33 KB
/
fcrn-depthprediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import sys
import time
from PIL import Image
import numpy as np
import cv2
from matplotlib import pyplot as plt
import ailia
# import original modules
sys.path.append('../../util')
from utils import get_base_parser, update_parser, get_savepath # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from webcamera_utils import get_capture, get_writer, \
calc_adjust_fsize ,preprocess_frame # noqa: E402
from image_utils import normalize_image # noqa: E402
# logger
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT_PATH = 'ResNet50UpProj.onnx'
MODEL_PATH = 'ResNet50UpProj.onnx.prototxt'
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/fcrn-depthprediction/'
IMAGE_PATH = 'input.jpg'
SAVE_IMAGE_PATH = 'input_depth.png'
IMAGE_HEIGHT = 228
IMAGE_WIDTH = 304
CHANNELS = 3
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('FCRN-DepthPrediction model', IMAGE_PATH, SAVE_IMAGE_PATH)
args = update_parser(parser)
# ======================
# Main functions
# ======================
def recognize_from_image():
# net initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
# input image loop
for image_path in args.input:
logger.info(image_path)
# prepare input data
img = Image.open(image_path)
img = img.resize([IMAGE_WIDTH,IMAGE_HEIGHT], Image.ANTIALIAS)
img = np.array(img).astype('float32')
img = np.expand_dims(np.asarray(img), axis=0)
img = img[:,:,:,0:3]
logger.info(f'input image shape: {img.shape}')
net.set_input_shape(img.shape)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
total_time = 0
for i in range(args.benchmark_count):
start = int(round(time.time() * 1000))
result = net.predict(img)[0]
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
if i != 0:
total_time = total_time + (end - start)
logger.info(f'\taverage time {total_time / (args.benchmark_count-1)} ms')
else:
result = net.predict(img)[0]
savepath = get_savepath(args.savepath, image_path, ext='.png')
logger.info(f'saved at : {savepath}')
fig = plt.figure()
ii = plt.imshow(result)
fig.colorbar(ii)
fig.savefig(savepath)
logger.info('Script finished successfully.')
def recognize_from_video():
# net initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
capture = get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath != SAVE_IMAGE_PATH:
logger.warning(
'currently, video results cannot be output correctly...'
)
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
save_h, save_w = calc_adjust_fsize(f_h, f_w, IMAGE_HEIGHT, IMAGE_WIDTH)
# save_w * 2: we stack source frame and estimated heatmap
writer = get_writer(args.savepath, save_h, save_w * 2)
else:
writer = None
input_shape_set = False
while(True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
_, img = preprocess_frame(
frame, IMAGE_HEIGHT, IMAGE_WIDTH, normalize_type='None'
)
img = np.transpose(img, (0,2,3,1))
if(not input_shape_set):
net.set_input_shape(img.shape)
input_shape_set = True
result = net.predict(img)[0]
plt.imshow(result)
plt.pause(.01)
if not plt.get_fignums():
break
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
recognize_from_image()
if __name__ == '__main__':
main()