forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fast-depth.py
179 lines (142 loc) · 4.59 KB
/
fast-depth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import sys
import time
import cv2
import numpy as np
from PIL import Image
import ailia
import fast_depth_utils
# Import original modules.
sys.path.append("../../util")
from utils import get_base_parser, update_parser, get_savepath # noqa: E402
from model_utils import check_and_download_models # NOQA: E402
from webcamera_utils import get_capture, cut_max_square # NOQA: E402
# Logger
from logging import getLogger # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters
# ======================
WEIGHT_PATH = "fast-depth.onnx"
MODEL_PATH = "fast-depth.onnx.prototxt"
REMOTE_PATH = "https://storage.googleapis.com/ailia-models/fast-depth/"
IMAGE_PATH = "data/img/00001.png"
SAVE_IMAGE_PATH = "output.png"
DEPTH_MIN = 0 # In meters.
DEPTH_MAX = 5 # In meters.
OUTPUT_SIZE = (224, 224)
# ======================
# Argument Parser Config
# ======================
parser = get_base_parser("FastDepth", IMAGE_PATH, SAVE_IMAGE_PATH)
parser.add_argument(
"--savepath",
default="img",
type=str,
metavar="PATH",
help="Path to output directory",
)
parser.add_argument(
"--use_fixed_scale",
action="store_true",
help="Use fixed range of depth for color scale.",
)
args = update_parser(parser)
# ======================
# Main functions
# ======================
def _make_dataset(img):
input_np = fast_depth_utils.transform(img, OUTPUT_SIZE)
input_tensor = input_np.transpose((2, 0, 1)).copy()
while input_tensor.ndim < 3:
input_tensor = np.expand_dims(input_tensor, 0)
return [np.expand_dims(input_tensor, 0)]
def _prepare_data(args, image_path=None, frame=None):
if args.video is not None:
return _make_dataset(frame)
else:
with Image.open(image_path) as im:
rgb = np.asarray(im)
return _make_dataset(rgb)
def _initialize_net(args):
return ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
def _infer(img, net):
return net.predict(img)
def _estimate(img, model, args):
img_depth = _infer(img, model)
depth_pred = np.squeeze(img_depth)
if args.use_fixed_scale:
scale_min = min(DEPTH_MIN, np.min(depth_pred))
scale_max = max(DEPTH_MAX, np.max(depth_pred))
else:
scale_min = np.min(depth_pred)
scale_max = np.max(depth_pred)
depth_pred_col = fast_depth_utils.colored_depthmap(
depth_pred,
scale_min,
scale_max,
)
return depth_pred_col
def recognize_from_image():
# Input image loop
for image_path in args.input:
logger.info(image_path)
# Prepare input data.
dataset = _prepare_data(args, image_path=image_path)
# Initialize net.
net = _initialize_net(args)
# Inference
logger.info("Start inference...")
if args.benchmark:
logger.info("BENCHMARK mode")
for i in range(5):
start = int(round(time.time() * 1000))
_estimate(dataset[0], net, args)
end = int(round(time.time() * 1000))
logger.info(f"\tailia processing time {end - start} ms")
else:
depth_pred_col = _estimate(dataset[0], net, args)
filepath = get_savepath(args.savepath, image_path, ext=".png")
logger.info(f"saved at : {filepath}")
fast_depth_utils.save_image(depth_pred_col, filepath)
logger.info("Script finished successfully.")
def recognize_from_video():
# Initialize net.
net = _initialize_net(args)
capture = get_capture(args.video)
frame_shown = False
while True:
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord("q")) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
# Prepare input data.
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = cut_max_square(frame)
dataset = _prepare_data(args, frame=frame)
# Inference
depth_pred_col = _estimate(dataset[0], net, args)
# Postprocessing
cv2.imshow(
"frame", cv2.cvtColor(depth_pred_col.astype("uint8"), cv2.COLOR_RGB2BGR)
)
frame_shown = True
capture.release()
cv2.destroyAllWindows()
logger.info("Script finished successfully.")
def main():
# Check model files and download.
check_and_download_models(
WEIGHT_PATH,
MODEL_PATH,
REMOTE_PATH,
)
if args.video is not None:
# Video mode
recognize_from_video()
else:
# Image mode
recognize_from_image()
if __name__ == "__main__":
main()