forked from axinc-ai/ailia-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathacculus-pose.py
211 lines (171 loc) · 6.62 KB
/
acculus-pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import sys
import time
import ailia
import cv2
import numpy as np
sys.path.append('../../util')
# logger
from logging import getLogger # noqa: E402
from image_utils import imread, load_image # noqa: E402
from model_utils import check_and_download_models # noqa: E402
from utils import get_base_parser, get_savepath, update_parser # noqa: E402
from webcamera_utils import adjust_frame_size, get_capture # noqa: E402
logger = getLogger(__name__)
# ======================
# Parameters 1
# ======================
IMAGE_PATH = 'balloon.png'
SAVE_IMAGE_PATH = 'output.png'
IMAGE_HEIGHT = 240
IMAGE_WIDTH = 320
ALGORITHM = ailia.POSE_ALGORITHM_ACCULUS_POSE
# NOTE: commercial model
logger.warning('The pre-trained model is not available freely')
MODEL_NAME = 'acculus_pose'
WEIGHT_PATH = 'fullbody_obf.caffemodel'
MODEL_PATH = 'fullbody_obf.prototxt'
REMOTE_PATH = ''
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser(
'Acculus human pose estimation.', IMAGE_PATH, SAVE_IMAGE_PATH
)
parser.add_argument(
'-n', '--normal', action='store_true',
help=('By default, the optimized model is used, but with this option, '
'you can switch to the normal (not optimized) model')
)
args = update_parser(parser)
# ======================
# Utils
# ======================
def hsv_to_rgb(h, s, v):
bgr = cv2.cvtColor(
np.array([[[h, s, v]]], dtype=np.uint8), cv2.COLOR_HSV2BGR
)[0][0]
return (int(bgr[2]), int(bgr[1]), int(bgr[0]))
def line(input_img, person, point1, point2):
threshold = 0.3
if person.points[point1].score > threshold and\
person.points[point2].score > threshold:
color = hsv_to_rgb(255*point1/ailia.POSE_KEYPOINT_CNT, 255, 255)
x1 = int(input_img.shape[1] * person.points[point1].x)
y1 = int(input_img.shape[0] * person.points[point1].y)
x2 = int(input_img.shape[1] * person.points[point2].x)
y2 = int(input_img.shape[0] * person.points[point2].y)
cv2.line(input_img, (x1, y1), (x2, y2), color, 5)
def display_result(input_img, pose):
count = pose.get_object_count()
for idx in range(count):
person = pose.get_object_pose(idx)
line(input_img, person, ailia.POSE_KEYPOINT_NOSE,
ailia.POSE_KEYPOINT_SHOULDER_CENTER)
line(input_img, person, ailia.POSE_KEYPOINT_SHOULDER_LEFT,
ailia.POSE_KEYPOINT_SHOULDER_CENTER)
line(input_img, person, ailia.POSE_KEYPOINT_SHOULDER_RIGHT,
ailia.POSE_KEYPOINT_SHOULDER_CENTER)
line(input_img, person, ailia.POSE_KEYPOINT_EYE_LEFT,
ailia.POSE_KEYPOINT_NOSE)
line(input_img, person, ailia.POSE_KEYPOINT_EYE_RIGHT,
ailia.POSE_KEYPOINT_NOSE)
line(input_img, person, ailia.POSE_KEYPOINT_EAR_LEFT,
ailia.POSE_KEYPOINT_EYE_LEFT)
line(input_img, person, ailia.POSE_KEYPOINT_EAR_RIGHT,
ailia.POSE_KEYPOINT_EYE_RIGHT)
line(input_img, person, ailia.POSE_KEYPOINT_ELBOW_LEFT,
ailia.POSE_KEYPOINT_SHOULDER_LEFT)
line(input_img, person, ailia.POSE_KEYPOINT_ELBOW_RIGHT,
ailia.POSE_KEYPOINT_SHOULDER_RIGHT)
line(input_img, person, ailia.POSE_KEYPOINT_WRIST_LEFT,
ailia.POSE_KEYPOINT_ELBOW_LEFT)
line(input_img, person, ailia.POSE_KEYPOINT_WRIST_RIGHT,
ailia.POSE_KEYPOINT_ELBOW_RIGHT)
line(input_img, person, ailia.POSE_KEYPOINT_BODY_CENTER,
ailia.POSE_KEYPOINT_SHOULDER_CENTER)
line(input_img, person, ailia.POSE_KEYPOINT_HIP_LEFT,
ailia.POSE_KEYPOINT_BODY_CENTER)
line(input_img, person, ailia.POSE_KEYPOINT_HIP_RIGHT,
ailia.POSE_KEYPOINT_BODY_CENTER)
line(input_img, person, ailia.POSE_KEYPOINT_KNEE_LEFT,
ailia.POSE_KEYPOINT_HIP_LEFT)
line(input_img, person, ailia.POSE_KEYPOINT_ANKLE_LEFT,
ailia.POSE_KEYPOINT_KNEE_LEFT)
line(input_img, person, ailia.POSE_KEYPOINT_KNEE_RIGHT,
ailia.POSE_KEYPOINT_HIP_RIGHT)
line(input_img, person, ailia.POSE_KEYPOINT_ANKLE_RIGHT,
ailia.POSE_KEYPOINT_KNEE_RIGHT)
# ======================
# Main functions
# ======================
def recognize_from_image():
# net initialize
pose = ailia.PoseEstimator(
MODEL_PATH, WEIGHT_PATH, env_id=args.env_id, algorithm=ALGORITHM
)
# input image loop
for image_path in args.input:
# prepare input data
logger.info(image_path)
src_img = imread(image_path)
input_image = load_image(
image_path,
(IMAGE_HEIGHT, IMAGE_WIDTH),
normalize_type='None'
)
input_data = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGRA)
# inference
logger.info('Start inference...')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(5):
start = int(round(time.time() * 1000))
_ = pose.compute(input_data)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
_ = pose.compute(input_data)
# post-processing
count = pose.get_object_count()
logger.info(f'person_count={count}')
display_result(src_img, pose)
# cv2.imwrite(args.savepath, src_img)
cv2.imwrite(get_savepath(args.savepath, image_path), src_img)
logger.info('Script finished successfully.')
def recognize_from_video():
# net initialize
pose = ailia.PoseEstimator(
MODEL_PATH, WEIGHT_PATH, env_id=args.env_id, algorithm=ALGORITHM
)
capture = get_capture(args.video)
frame_shown = False
while(True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
input_image, input_data = adjust_frame_size(
frame, IMAGE_HEIGHT, IMAGE_WIDTH,
)
input_data = cv2.cvtColor(input_data, cv2.COLOR_BGR2BGRA)
# inference
_ = pose.compute(input_data)
# postprocessing
display_result(input_image, pose)
cv2.imshow('frame', input_image)
frame_shown = True
capture.release()
cv2.destroyAllWindows()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
recognize_from_image()
if __name__ == '__main__':
main()