forked from paperswithbacktest/awesome-systematic-trading
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathterm-structure-effect-in-commodities.py
180 lines (144 loc) · 8.13 KB
/
term-structure-effect-in-commodities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# https://quantpedia.com/strategies/term-structure-effect-in-commodities/
#
# This simple strategy buys each month the 20% of commodities with the highest roll-returns and shorts the 20% of commodities with the lowest
# roll-returns and holds the long-short positions for one month. The contracts in each quintile are equally-weighted.
# The investment universe is all commodity futures contracts.
#
# QC implementation:
import numpy as np
from datetime import time
from AlgorithmImports import *
class TermStructure(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2009, 1, 1)
self.SetCash(100000)
symbols = {
'CME_S1': Futures.Grains.Soybeans,
'CME_W1' : Futures.Grains.Wheat,
'CME_SM1' : Futures.Grains.SoybeanMeal,
'CME_C1' : Futures.Grains.Corn,
'CME_O1' : Futures.Grains.Oats,
'CME_LC1' : Futures.Meats.LiveCattle,
'CME_FC1' : Futures.Meats.FeederCattle,
'CME_LN1' : Futures.Meats.LeanHogs,
'CME_GC1' : Futures.Metals.Gold,
'CME_SI1' : Futures.Metals.Silver,
'CME_PL1' : Futures.Metals.Platinum,
'CME_HG1' : Futures.Metals.Copper,
'CME_LB1' : Futures.Forestry.RandomLengthLumber,
'CME_NG1' : Futures.Energies.NaturalGas,
'CME_PA1' : Futures.Metals.Palladium,
'CME_DA1' : Futures.Dairy.ClassIIIMilk,
'CME_RB1' : Futures.Energies.Gasoline,
'ICE_WT1' : Futures.Energies.CrudeOilWTI,
'ICE_CC1' : Futures.Softs.Cocoa,
'ICE_O1' : Futures.Energies.HeatingOil,
'ICE_SB1' : Futures.Softs.Sugar11CME,
}
self.futures_info:dict = {}
self.quantile:int = 5
self.min_expiration_days:int = 2
self.max_expiration_days:int = 360
self.price_data:dict[Symbol, RollingWindow] = {}
self.period:int = 60
self.SetWarmup(self.period, Resolution.Daily)
for qp_symbol, qc_future in symbols.items():
# QP futures
data:Security = self.AddData(QuantpediaFutures, qp_symbol, Resolution.Daily)
data.SetFeeModel(CustomFeeModel())
data.SetLeverage(5)
self.price_data[data.Symbol] = RollingWindow[float](self.period)
# QC futures
future:Future = self.AddFuture(qc_future, Resolution.Daily, dataNormalizationMode=DataNormalizationMode.Raw)
future.SetFilter(timedelta(days=self.min_expiration_days), timedelta(days=self.max_expiration_days))
self.futures_info[future.Symbol.Value] = FuturesInfo(data.Symbol)
self.recent_month:int = -1
def find_and_update_contracts(self, futures_chain, symbol) -> None:
near_contract:FuturesContract = None
dist_contract:FuturesContract = None
if symbol in futures_chain:
contracts:list = [contract for contract in futures_chain[symbol] if contract.Expiry.date() > self.Time.date()]
if len(contracts) >= 2:
contracts:list = sorted(contracts, key=lambda x: x.Expiry, reverse=False)
near_contract = contracts[0]
dist_contract = contracts[1]
self.futures_info[symbol].update_contracts(near_contract, dist_contract)
def OnData(self, data):
if data.FutureChains.Count > 0:
for symbol, futures_info in self.futures_info.items():
# check if near contract is expired or is not initialized
if not futures_info.is_initialized() or \
(futures_info.is_initialized() and futures_info.near_contract.Expiry.date() == self.Time.date()):
self.find_and_update_contracts(data.FutureChains, symbol)
roll_return:dict[Symbol, float] = {}
rebalance_flag:bool = False
# roll return calculation
for symbol, futures_info in self.futures_info.items():
# futures data is present in the algorithm
if futures_info.quantpedia_future in data and data[futures_info.quantpedia_future]:
# store daily data
self.price_data[futures_info.quantpedia_future].Add(data[futures_info.quantpedia_future].Value)
if not self.price_data[futures_info.quantpedia_future].IsReady:
continue
# new month rebalance
if self.Time.month != self.recent_month and not self.IsWarmingUp:
self.recent_month = self.Time.month
rebalance_flag = True
if rebalance_flag:
if futures_info.is_initialized():
near_c:FuturesContract = futures_info.near_contract
dist_c:FuturesContract = futures_info.distant_contract
if self.Securities.ContainsKey(near_c.Symbol) and self.Securities.ContainsKey(dist_c.Symbol):
raw_price1:float = self.Securities[near_c.Symbol].Close * self.Securities[symbol].SymbolProperties.PriceMagnifier
raw_price2:float = self.Securities[dist_c.Symbol].Close * self.Securities[symbol].SymbolProperties.PriceMagnifier
if raw_price1 != 0 and raw_price2 != 0:
roll_return[futures_info.quantpedia_future] = raw_price1 / raw_price2 - 1
if rebalance_flag:
weights:dict[Symbol, float] = {}
long:list[Symbol] = []
short:list[Symbol] = []
if len(roll_return) >= self.quantile:
# roll return sorting
sorted_by_roll:list = sorted(roll_return.items(), key = lambda x: x[1], reverse=True)
quantile:int = int(len(sorted_by_roll) / self.quantile)
long = [x[0] for x in sorted_by_roll[:quantile]]
short = [x[0] for x in sorted_by_roll[-quantile:]]
# trade execution
invested:list[Symbol] = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long + short:
self.Liquidate(symbol)
for symbol in long:
self.SetHoldings(symbol, 1 / len(long))
for symbol in short:
self.SetHoldings(symbol, -1 / len(short))
class FuturesInfo():
def __init__(self, quantpedia_future:Symbol) -> None:
self.quantpedia_future:Symbol = quantpedia_future
self.near_contract:FuturesContract = None
self.distant_contract:FuturesContract = None
def update_contracts(self, near_contract:FuturesContract, distant_contract:FuturesContract) -> None:
self.near_contract = near_contract
self.distant_contract = distant_contract
def is_initialized(self) -> bool:
return self.near_contract is not None and self.distant_contract is not None
# Custom fee model.
class CustomFeeModel():
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
return data