forked from ExplainableML/czsl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
178 lines (142 loc) · 5.66 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Torch imports
import torch
from torch.utils.tensorboard import SummaryWriter
import torch.backends.cudnn as cudnn
import numpy as np
from flags import DATA_FOLDER
cudnn.benchmark = True
# Python imports
import tqdm
from tqdm import tqdm
import os
from os.path import join as ospj
# Local imports
from data import dataset as dset
from models.common import Evaluator
from utils.utils import load_args
from utils.config_model import configure_model
from flags import parser
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def main():
# Get arguments and start logging
args = parser.parse_args()
logpath = args.logpath
config = [os.path.join(logpath, _) for _ in os.listdir(logpath) if _.endswith('yml')][0]
load_args(config, args)
# Get dataset
trainset = dset.CompositionDataset(
root=os.path.join(DATA_FOLDER,args.data_dir),
phase='train',
split=args.splitname,
model=args.image_extractor,
update_features=args.update_features,
train_only=args.train_only,
subset=args.subset,
open_world=args.open_world
)
valset = dset.CompositionDataset(
root=os.path.join(DATA_FOLDER,args.data_dir),
phase='val',
split=args.splitname,
model=args.image_extractor,
subset=args.subset,
update_features=args.update_features,
open_world=args.open_world
)
valoader = torch.utils.data.DataLoader(
valset,
batch_size=args.test_batch_size,
shuffle=False,
num_workers=8)
testset = dset.CompositionDataset(
root=os.path.join(DATA_FOLDER,args.data_dir),
phase='test',
split=args.splitname,
model =args.image_extractor,
subset=args.subset,
update_features = args.update_features,
open_world=args.open_world
)
testloader = torch.utils.data.DataLoader(
testset,
batch_size=args.test_batch_size,
shuffle=False,
num_workers=args.workers)
# Get model and optimizer
image_extractor, model, optimizer = configure_model(args, trainset)
args.extractor = image_extractor
args.load = ospj(logpath,'ckpt_best_auc.t7')
checkpoint = torch.load(args.load)
if image_extractor:
try:
image_extractor.load_state_dict(checkpoint['image_extractor'])
image_extractor.eval()
except:
print('No Image extractor in checkpoint')
model.load_state_dict(checkpoint['net'])
model.eval()
threshold = None
if args.open_world and args.hard_masking:
assert args.model == 'compcos', args.model + ' does not have hard masking.'
if args.threshold is not None:
threshold = args.threshold
else:
evaluator_val = Evaluator(valset, model)
unseen_scores = model.compute_feasibility().to('cpu')
seen_mask = model.seen_mask.to('cpu')
min_feasibility = (unseen_scores+seen_mask*10.).min()
max_feasibility = (unseen_scores-seen_mask*10.).max()
thresholds = np.linspace(min_feasibility,max_feasibility, num=args.threshold_trials)
best_auc = 0.
best_th = -10
with torch.no_grad():
for th in thresholds:
results = test(image_extractor,model,valoader,evaluator_val,args,threshold=th,print_results=False)
auc = results['AUC']
if auc > best_auc:
best_auc = auc
best_th = th
print('New best AUC',best_auc)
print('Threshold',best_th)
threshold = best_th
evaluator = Evaluator(testset, model)
with torch.no_grad():
test(image_extractor, model, testloader, evaluator, args, threshold)
def test(image_extractor, model, testloader, evaluator, args, threshold=None, print_results=True):
if image_extractor:
image_extractor.eval()
model.eval()
accuracies, all_sub_gt, all_attr_gt, all_obj_gt, all_pair_gt, all_pred = [], [], [], [], [], []
for idx, data in tqdm(enumerate(testloader), total=len(testloader), desc='Testing'):
data = [d.to(device) for d in data]
if image_extractor:
data[0] = image_extractor(data[0])
if threshold is None:
_, predictions = model(data)
else:
_, predictions = model.val_forward_with_threshold(data,threshold)
attr_truth, obj_truth, pair_truth = data[1], data[2], data[3]
all_pred.append(predictions)
all_attr_gt.append(attr_truth)
all_obj_gt.append(obj_truth)
all_pair_gt.append(pair_truth)
all_attr_gt, all_obj_gt, all_pair_gt = torch.cat(all_attr_gt), torch.cat(all_obj_gt), torch.cat(all_pair_gt)
all_pred_dict = {}
# Gather values as dict of (attr, obj) as key and list of predictions as values
for k in all_pred[0].keys():
all_pred_dict[k] = torch.cat(
[all_pred[i][k] for i in range(len(all_pred))])
# Calculate best unseen accuracy
results = evaluator.score_model(all_pred_dict, all_obj_gt, bias=args.bias, topk=args.topk)
stats = evaluator.evaluate_predictions(results, all_attr_gt, all_obj_gt, all_pair_gt, all_pred_dict,
topk=args.topk)
result = ''
for key in stats:
result = result + key + ' ' + str(round(stats[key], 4)) + '| '
result = result + args.name
if print_results:
print(f'Results')
print(result)
return results
if __name__ == '__main__':
main()