-
Notifications
You must be signed in to change notification settings - Fork 21
/
util.py
executable file
·285 lines (243 loc) · 11.6 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# import h5py
import numpy as np
import scipy.io as sio
import torch
from sklearn import preprocessing
import sys
import h5py
import os
from logger import create_logger
import datetime
def initialize_exp(path, name):
# """
# Experiment initialization.
# """
# # dump parameters
# params.dump_path = get_dump_path(params)
# pickle.dump(params, open(os.path.join(params.dump_path, 'params.pkl'), 'wb'))
# create a logger
time_stamp = datetime.datetime.now()
time = time_stamp.strftime('%Y%m%d%H%M%S')
logger = create_logger(os.path.join(path, name + '_' + time + '.log'))
print('log_name:',name + '_' + time + '.log')
# logger = create_logger(os.path.join(path, name +'.log'))
logger.info('============ Initialized logger ============')
# logger.info('\n'.join('%s: %s' % (k, str(v)) for k, v
# in sorted(dict(vars(params)).items())))
return logger
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
m.weight.data.normal_(0.0, 0.02)
m.bias.data.fill_(0)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def map_label(label, classes):
mapped_label = torch.LongTensor(label.size())
for i in range(classes.size(0)):
mapped_label[label == classes[i]] = i
return mapped_label
class Logger(object):
def __init__(self, filename):
self.filename = filename
f = open(self.filename + '.log', "a")
f.close()
def write(self, message):
f = open(self.filename + '.log', "a")
f.write(message)
f.close()
class DATA_LOADER(object):
def __init__(self, opt):
if opt.matdataset:
if opt.dataset == 'imagenet':
self.read_matimagenet(opt)
else:
self.read_matdataset(opt)
self.index_in_epoch = 0
self.epochs_completed = 0
# not tested
def read_h5dataset(self, opt):
# read image feature
fid = h5py.File(opt.dataroot + "/" + opt.dataset + "/" + opt.image_embedding + ".hdf5", 'r')
feature = fid['feature'][()]
label = fid['label'][()]
trainval_loc = fid['trainval_loc'][()]
train_loc = fid['train_loc'][()]
val_unseen_loc = fid['val_unseen_loc'][()]
test_seen_loc = fid['test_seen_loc'][()]
test_unseen_loc = fid['test_unseen_loc'][()]
fid.close()
# read attributes
fid = h5py.File(opt.dataroot + "/" + opt.dataset + "/" + opt.class_embedding + ".hdf5", 'r')
self.attribute = fid['attribute'][()]
fid.close()
if not opt.validation:
self.train_feature = feature[trainval_loc]
self.train_label = label[trainval_loc]
self.test_unseen_feature = feature[test_unseen_loc]
self.test_unseen_label = label[test_unseen_loc]
self.test_seen_feature = feature[test_seen_loc]
self.test_seen_label = label[test_seen_loc]
else:
self.train_feature = feature[train_loc]
self.train_label = label[train_loc]
self.test_unseen_feature = feature[val_unseen_loc]
self.test_unseen_label = label[val_unseen_loc]
self.seenclasses = np.unique(self.train_label)
self.unseenclasses = np.unique(self.test_unseen_label)
self.nclasses = self.seenclasses.size(0)
def read_matimagenet(self, opt):
if opt.preprocessing:
print('MinMaxScaler...')
scaler = preprocessing.MinMaxScaler()
matcontent = h5py.File(opt.dataroot + "/ILSVRC_2012" + "/ILSVRC2012_res101_feature.mat", "r")
feature = scaler.fit_transform(np.array(matcontent['features'])).T
label = np.array(matcontent['labels']).astype(int).squeeze() - 1
feature_val = scaler.transform(np.array(matcontent['features_val']))
label_val = np.array(matcontent['labels_val']).astype(int).squeeze() - 1
matcontent.close()
matcontent = h5py.File('/BS/xian/work/data/imageNet21K/extract_res/res101_1crop_2hops_t.mat', 'r')
feature_unseen = scaler.transform(np.array(matcontent['features']))
label_unseen = np.array(matcontent['labels']).astype(int).squeeze() - 1
matcontent.close()
else:
matcontent = h5py.File(opt.dataroot + "/ILSVRC_2012" + "/ILSVRC2012_res101_feature.mat", "r")
feature = np.array(matcontent['features']).T
label = np.array(matcontent['labels']).astype(int).squeeze() - 1
feature_val = np.array(matcontent['features_val'])
label_val = np.array(matcontent['labels_val']).astype(int).squeeze() - 1
matcontent.close()
matcontent = h5py.File(opt.dataroot + "/ImageNet/ImageNet_w2v.mat", "r")
self.attribute = torch.from_numpy(matcontent['w2v'][()].T).float()
matcontent.close()
# get the data split
data_split = sio.loadmat(opt.dataroot + '/imagenet_feature/ImageNet_splits.mat')
self.hop_2_classes = torch.from_numpy(np.array(data_split['hops2']).astype(int).squeeze() - 1).long()
self.hop_3_classes = torch.from_numpy(np.array(data_split['hops3']).astype(int).squeeze() - 1).long()
self.all_classes = torch.from_numpy(np.array(data_split['all']).astype(int).squeeze() - 1).long()
self.hop_2_classes_map = map_label(self.hop_2_classes, self.hop_2_classes) + 1000
self.hop_3_classes_map = map_label(self.hop_3_classes, self.hop_3_classes) + 1000
self.all_classes_map = map_label(self.all_classes, self.all_classes) + 1000
# self.most_popular_500=torch.from_numpy(np.array(data_split['mp500']).astype(int).squeeze() - 1).long()
# self.most_popular_1000 = torch.from_numpy(np.array(data_split['mp1000']).astype(int).squeeze() - 1).long()
# self.most_popular_5000 = torch.from_numpy(np.array(data_split['mp5000']).astype(int).squeeze() - 1).long()
#
# self.least_popular_500 = torch.from_numpy(np.array(data_split['lp500']).astype(int).squeeze() - 1).long()
# self.least_popular_1000 = torch.from_numpy(np.array(data_split['lp1000']).astype(int).squeeze() - 1).long()
# self.least_popular_5000 = torch.from_numpy(np.array(data_split['lp5000']).astype(int).squeeze() - 1).long()
self.train_feature = torch.from_numpy(feature).float() # 1281167
self.train_label = torch.from_numpy(label).long()
self.test_seen_feature = torch.from_numpy(feature_val).float() # 50000
self.test_seen_label = torch.from_numpy(label_val).long()
self.ntrain = self.train_feature.size()[0]
self.seenclasses = torch.from_numpy(np.unique(self.train_label.numpy())) # 1000
self.ntrain_class = self.seenclasses.size(0)
# self.ntest_class = self.unseenclasses.size(0)
self.attribute_seen = self.attribute[self.seenclasses]
self.unseen_split = {'2-hop': self.hop_2_classes, '3-hop': self.hop_3_classes, 'all': self.all_classes,
'2-hop_map': self.hop_2_classes_map, '3-hop_map': self.hop_3_classes_map,
'all_map': self.all_classes_map}
# release the memory
import gc
del matcontent, feature, feature_val, label, label_val
gc.collect()
def read_matdataset(self, opt):
matcontent = sio.loadmat(opt.dataroot + "/" + opt.dataset + "/" + opt.image_embedding + ".mat")
feature = matcontent['features'].T
self.all_file = matcontent['image_files']
label = matcontent['labels'].astype(int).squeeze() - 1
matcontent = sio.loadmat(opt.dataroot + "/" + opt.dataset + "/" + opt.class_embedding + "_splits.mat")
# numpy array index starts from 0, matlab starts from 1
trainval_loc = matcontent['trainval_loc'].squeeze() - 1
train_loc = matcontent['train_loc'].squeeze() - 1
val_unseen_loc = matcontent['val_loc'].squeeze() - 1
test_seen_loc = matcontent['test_seen_loc'].squeeze() - 1
test_unseen_loc = matcontent['test_unseen_loc'].squeeze() - 1
self.attribute = torch.from_numpy(matcontent['att'].T).float()
if not opt.validation:
self.train_image_file = self.all_file[trainval_loc]
self.test_seen_image_file = self.all_file[test_seen_loc]
self.test_unseen_image_file = self.all_file[test_unseen_loc]
if opt.preprocessing:
if opt.standardization:
print('standardization...')
scaler = preprocessing.StandardScaler()
else:
scaler = preprocessing.MinMaxScaler()
_train_feature = scaler.fit_transform(feature[trainval_loc])
_test_seen_feature = scaler.transform(feature[test_seen_loc])
_test_unseen_feature = scaler.transform(feature[test_unseen_loc])
self.train_feature = torch.from_numpy(_train_feature).float()
mx = self.train_feature.max()
self.train_feature.mul_(1 / mx)
self.train_label = torch.from_numpy(label[trainval_loc]).long()
self.test_unseen_feature = torch.from_numpy(_test_unseen_feature).float()
self.test_unseen_feature.mul_(1 / mx)
self.test_unseen_label = torch.from_numpy(label[test_unseen_loc]).long()
self.test_seen_feature = torch.from_numpy(_test_seen_feature).float()
self.test_seen_feature.mul_(1 / mx)
self.test_seen_label = torch.from_numpy(label[test_seen_loc]).long()
else:
self.train_feature = torch.from_numpy(feature[trainval_loc]).float()
self.train_label = torch.from_numpy(label[trainval_loc]).long()
self.test_unseen_feature = torch.from_numpy(feature[test_unseen_loc]).float()
self.test_unseen_label = torch.from_numpy(label[test_unseen_loc]).long()
self.test_seen_feature = torch.from_numpy(feature[test_seen_loc]).float()
self.test_seen_label = torch.from_numpy(label[test_seen_loc]).long()
else:
self.train_feature = torch.from_numpy(feature[train_loc]).float()
self.train_label = torch.from_numpy(label[train_loc]).long()
self.test_unseen_feature = torch.from_numpy(feature[val_unseen_loc]).float()
self.test_unseen_label = torch.from_numpy(label[val_unseen_loc]).long()
self.seenclasses = torch.from_numpy(np.unique(self.train_label.numpy()))
self.unseenclasses = torch.from_numpy(np.unique(self.test_unseen_label.numpy()))
self.ntrain = self.train_feature.size()[0]
self.ntrain_class = self.seenclasses.size(0)
self.ntest_class = self.unseenclasses.size(0)
self.train_class = self.seenclasses.clone()
self.allclasses = torch.arange(0, self.ntrain_class + self.ntest_class).long()
self.attribute_seen = self.attribute[self.seenclasses]
# collect the data of each class
self.train_samples_class_index = torch.tensor([self.train_label.eq(i_class).sum().float() for i_class in self.train_class])
#
# import pdb
# pdb.set_trace()
# self.train_mapped_label = map_label(self.train_label, self.seenclasses)
def next_batch_one_class(self, batch_size):
if self.index_in_epoch == self.ntrain_class:
self.index_in_epoch = 0
perm = torch.randperm(self.ntrain_class)
self.train_class[perm] = self.train_class[perm]
iclass = self.train_class[self.index_in_epoch]
idx = self.train_label.eq(iclass).nonzero().squeeze()
perm = torch.randperm(idx.size(0))
idx = idx[perm]
iclass_feature = self.train_feature[idx]
iclass_label = self.train_label[idx]
self.index_in_epoch += 1
return iclass_feature[0:batch_size], iclass_label[0:batch_size], self.attribute[iclass_label[0:batch_size]]
def next_batch(self, batch_size):
idx = torch.randperm(self.ntrain)[0:batch_size]
batch_feature = self.train_feature[idx]
batch_label = self.train_label[idx]
batch_att = self.attribute[batch_label]
return batch_feature, batch_label, batch_att
# select batch samples by randomly drawing batch_size classes
def next_batch_uniform_class(self, batch_size):
batch_class = torch.LongTensor(batch_size)
for i in range(batch_size):
idx = torch.randperm(self.ntrain_class)[0]
batch_class[i] = self.train_class[idx]
batch_feature = torch.FloatTensor(batch_size, self.train_feature.size(1))
batch_label = torch.LongTensor(batch_size)
batch_att = torch.FloatTensor(batch_size, self.attribute.size(1))
for i in range(batch_size):
iclass = batch_class[i]
idx_iclass = self.train_label.eq(iclass).nonzero().squeeze()
idx_in_iclass = torch.randperm(idx_iclass.size(0))[0]
idx_file = idx_iclass[idx_in_iclass]
batch_feature[i] = self.train_feature[idx_file]
batch_label[i] = self.train_label[idx_file]
batch_att[i] = self.attribute[batch_label[i]]
return batch_feature, batch_label, batch_att