-
Notifications
You must be signed in to change notification settings - Fork 0
/
Descriptors.h
519 lines (428 loc) · 13.3 KB
/
Descriptors.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
#ifndef DESCRIPTORS_H_
#define DESCRIPTORS_H_
#include "DenseTrack.h"
using namespace cv;
// get the rectangle for computing the descriptor
void GetRect(const Point2f& point, RectInfo& rect, const int width, const int height, const DescInfo& descInfo)
{
int x_min = descInfo.width/2;
int y_min = descInfo.height/2;
int x_max = width - descInfo.width;
int y_max = height - descInfo.height;
rect.x = std::min<int>(std::max<int>(cvRound(point.x) - x_min, 0), x_max);
rect.y = std::min<int>(std::max<int>(cvRound(point.y) - y_min, 0), y_max);
rect.width = descInfo.width;
rect.height = descInfo.height;
}
// compute integral histograms for the whole image
void BuildDescMat(const Mat& xComp, const Mat& yComp, float* desc, const DescInfo& descInfo)
{
float maxAngle = 360.f;
int nDims = descInfo.nBins;
// one more bin for hof
int nBins = descInfo.isHof ? descInfo.nBins-1 : descInfo.nBins;
const float angleBase = float(nBins)/maxAngle;
int step = (xComp.cols+1)*nDims;
int index = step + nDims;
for(int i = 0; i < xComp.rows; i++, index += nDims) {
const float* xc = xComp.ptr<float>(i);
const float* yc = yComp.ptr<float>(i);
// summarization of the current line
std::vector<float> sum(nDims);
for(int j = 0; j < xComp.cols; j++) {
float x = xc[j];
float y = yc[j];
float mag0 = sqrt(x*x + y*y);
float mag1;
int bin0, bin1;
// for the zero bin of hof
if(descInfo.isHof && mag0 <= min_flow) {
bin0 = nBins; // the zero bin is the last one
mag0 = 1.0;
bin1 = 0;
mag1 = 0;
}
else {
float angle = fastAtan2(y, x);
if(angle >= maxAngle) angle -= maxAngle;
// split the mag to two adjacent bins
float fbin = angle * angleBase;
bin0 = cvFloor(fbin);
bin1 = (bin0+1)%nBins;
mag1 = (fbin - bin0)*mag0;
mag0 -= mag1;
}
sum[bin0] += mag0;
sum[bin1] += mag1;
for(int m = 0; m < nDims; m++, index++)
desc[index] = desc[index-step] + sum[m];
}
}
}
// get a descriptor from the integral histogram
void GetDesc(const DescMat* descMat, RectInfo& rect, DescInfo descInfo, std::vector<float>& desc, const int index)
{
int dim = descInfo.dim;
int nBins = descInfo.nBins;
int height = descMat->height;
int width = descMat->width;
int xStride = rect.width/descInfo.nxCells;
int yStride = rect.height/descInfo.nyCells;
int xStep = xStride*nBins;
int yStep = yStride*width*nBins;
// iterate over different cells
int iDesc = 0;
std::vector<float> vec(dim);
for(int xPos = rect.x, x = 0; x < descInfo.nxCells; xPos += xStride, x++)
for(int yPos = rect.y, y = 0; y < descInfo.nyCells; yPos += yStride, y++) {
// get the positions in the integral histogram
const float* top_left = descMat->desc + (yPos*width + xPos)*nBins;
const float* top_right = top_left + xStep;
const float* bottom_left = top_left + yStep;
const float* bottom_right = bottom_left + xStep;
for(int i = 0; i < nBins; i++) {
float sum = bottom_right[i] + top_left[i] - bottom_left[i] - top_right[i];
vec[iDesc++] = std::max<float>(sum, 0) + epsilon;
}
}
float norm = 0;
for(int i = 0; i < dim; i++)
norm += vec[i];
if(norm > 0) norm = 1./norm;
int pos = index*dim;
for(int i = 0; i < dim; i++)
desc[pos++] = sqrt(vec[i]*norm);
}
// for HOG descriptor
void HogComp(const Mat& img, float* desc, DescInfo& descInfo)
{
Mat imgX, imgY;
Sobel(img, imgX, CV_32F, 1, 0, 1);
Sobel(img, imgY, CV_32F, 0, 1, 1);
BuildDescMat(imgX, imgY, desc, descInfo);
}
// for HOF descriptor
void HofComp(const Mat& flow, float* desc, DescInfo& descInfo)
{
Mat flows[2];
split(flow, flows);
BuildDescMat(flows[0], flows[1], desc, descInfo);
}
// for MBH descriptor
void MbhComp(const Mat& flow, float* descX, float* descY, DescInfo& descInfo)
{
Mat flows[2];
split(flow, flows);
Mat flowXdX, flowXdY, flowYdX, flowYdY;
Sobel(flows[0], flowXdX, CV_32F, 1, 0, 1);
Sobel(flows[0], flowXdY, CV_32F, 0, 1, 1);
Sobel(flows[1], flowYdX, CV_32F, 1, 0, 1);
Sobel(flows[1], flowYdY, CV_32F, 0, 1, 1);
BuildDescMat(flowXdX, flowXdY, descX, descInfo);
BuildDescMat(flowYdX, flowYdY, descY, descInfo);
}
//余弦距离表示两个向量之间方向的相似性,取值在0-2之间,取值越小代表方向越接近
double cosine_distance_flag(Point v1,Point v2,int& flag)
{
double dot = 0.0, denom_a = 0.0, denom_b = 0.0,cosine_distance=0.0 ;
dot = (v1.x)*(v2.x)+(v1.y)*(v2.y) ;
denom_a =(v1.x)*(v1.x)+(v1.y)*(v1.y) ;
denom_b =(v2.x)*(v2.x)+(v2.y)*(v2.y) ;
if(denom_a!=0 && denom_b!=0)
cosine_distance=1-(dot / (sqrt(denom_a) * sqrt(denom_b)));
else
flag-=1;
return cosine_distance ;
}
double cosine_distance(Point v1,Point v2)
{
double dot = 0.0, denom_a = 0.0, denom_b = 0.0,cosine_distance=0.0 ;
dot = (v1.x)*(v2.x)+(v1.y)*(v2.y) ;
denom_a =(v1.x)*(v1.x)+(v1.y)*(v1.y) ;
denom_b =(v2.x)*(v2.x)+(v2.y)*(v2.y) ;
if(denom_a!=0 && denom_b!=0){
cosine_distance=1-(dot / (sqrt(denom_a) * sqrt(denom_b)));
}
return cosine_distance ;
}
//calcuate direction features
void orientation(std::vector<Point2f>& track, double& mean_cos_distance, double& var_cos_distance, double& max_cos_distance,double& min_cos_distance)
{
std::vector<Point2f> temp_track(16);
int cos_size = track.size()-2;
int flag_size=track.size()-2;
for(int i = 0; i < cos_size; i++) {
Point v1=track[i+1]-track[i];
Point v2=track[i+2]-track[i+1];
mean_cos_distance += cosine_distance_flag(v1,v2,flag_size);
}
float cos_norm = 1./flag_size;
mean_cos_distance *= cos_norm;
for(int i = 0; i < cos_size; i++) {
Point v1=track[i+1]-track[i];
Point v2=track[i+2]-track[i+1];
double temp = cosine_distance(v1,v2) - mean_cos_distance;
var_cos_distance += temp*temp;
}
var_cos_distance *= cos_norm;
var_cos_distance = sqrt(var_cos_distance);
float temp_max = 0;
float temp_min = 2;
for(int i = 0; i < cos_size; i++) {
Point v1=track[i+1]-track[i];
Point v2=track[i+2]-track[i+1];
float temp_cos_distance = cosine_distance(v1,v2);
if(temp_cos_distance > temp_max)
temp_max =temp_cos_distance;
if(temp_cos_distance < temp_min)
temp_min =temp_cos_distance;
}
max_cos_distance=temp_max;
min_cos_distance=temp_min;
}
// check whether a trajectory is valid or not
bool IsValid(std::vector<Point2f>& track, float& mean_x, float& mean_y, float& var_x, float& var_y, float& length,double& mean_cos_distance, double& var_cos_distance, double& max_cos_distance,double& min_cos_distance)
{
std::vector<Point2f> temp_track(16);
int size = track.size();
float norm = 1./size;
for(int i = 0; i < size; i++) {
mean_x += track[i].x;
mean_y += track[i].y;
}
mean_x *= norm;
mean_y *= norm;
for(int i = 0; i < size; i++) {
float temp_x = track[i].x - mean_x;
float temp_y = track[i].y - mean_y;
var_x += temp_x*temp_x;
var_y += temp_y*temp_y;
}
var_x *= norm;
var_y *= norm;
var_x = sqrt(var_x);
var_y = sqrt(var_y);
// remove static trajectory
if(var_x < min_var && var_y < min_var)
return false;
// remove random trajectory
if( var_x > max_var || var_y > max_var )
return false;
float cur_max = 0;
for(int i = 0; i < size-1; i++) {
temp_track[i] = track[i+1] - track[i];
float temp = sqrt(temp_track[i].x*temp_track[i].x + temp_track[i].y*temp_track[i].y);
length += temp;
if(temp > cur_max)
cur_max = temp;
}
if(cur_max > max_dis && cur_max > length*0.7)
return false;
//orientation
int cos_size = track.size()-2;
int flag_size=track.size()-2;
for(int i = 0; i < cos_size; i++) {
Point v1=track[i+1]-track[i];
Point v2=track[i+2]-track[i+1];
mean_cos_distance += cosine_distance_flag(v1,v2,flag_size);
}
float cos_norm = 1./flag_size;
mean_cos_distance *= cos_norm;
for(int i = 0; i < cos_size; i++) {
Point v1=track[i+1]-track[i];
Point v2=track[i+2]-track[i+1];
double temp = cosine_distance(v1,v2) - mean_cos_distance;
var_cos_distance += temp*temp;
}
var_cos_distance *= cos_norm;
var_cos_distance = sqrt(var_cos_distance);
float temp_max = 0;
float temp_min = 2;
for(int i = 0; i < cos_size; i++) {
Point v1=track[i+1]-track[i];
Point v2=track[i+2]-track[i+1];
float temp_cos_distance = cosine_distance(v1,v2);
if(temp_cos_distance > temp_max)
temp_max =temp_cos_distance;
if(temp_cos_distance < temp_min)
temp_min =temp_cos_distance;
}
max_cos_distance=temp_max;
min_cos_distance=temp_min;
track.pop_back();
norm = 1./length;
// normalize the trajectory
/*
for(int i = 0; i < size-1; i++)
track[i] *= norm;
*/
return true;
}
bool alwaysValid(std::vector<Point2f>& track, float& mean_x, float& mean_y, float& var_x, float& var_y, float& length)
{
std::vector<Point2f> temp_track(16);
int size = track.size();
float norm = 1./size;
for(int i = 0; i < size; i++) {
mean_x += track[i].x;
mean_y += track[i].y;
}
mean_x *= norm;
mean_y *= norm;
for(int i = 0; i < size; i++) {
float temp_x = track[i].x - mean_x;
float temp_y = track[i].y - mean_y;
var_x += temp_x*temp_x;
var_y += temp_y*temp_y;
}
var_x *= norm;
var_y *= norm;
var_x = sqrt(var_x);
var_y = sqrt(var_y);
// remove static trajectory
if(var_x < min_var && var_y < min_var)
return false;
float cur_max = 0;
for(int i = 0; i < size-1; i++) {
temp_track[i] = track[i+1] - track[i];
float temp = sqrt(temp_track[i].x*temp_track[i].x + temp_track[i].y*temp_track[i].y);
length += temp;
if(temp > cur_max)
cur_max = temp;
}
track.pop_back();
norm = 1./length;
// normalize the trajectory
/*
for(int i = 0; i < size-1; i++)
track[i] *= norm;
*/
return true;
}
// detect new feature points in an image without overlapping to previous points
void DenseSample(const Mat& grey, std::vector<Point2f>& points, const double quality, const int min_distance)
{
int width = grey.cols/min_distance;
int height = grey.rows/min_distance;
Mat eig;
cornerMinEigenVal(grey, eig, 3, 3);
double maxVal = 0;
minMaxLoc(eig, 0, &maxVal);
const double threshold = maxVal*quality;
std::vector<int> counters(width*height);
int x_max = min_distance*width;
int y_max = min_distance*height;
for(int i = 0; i < points.size(); i++) {
Point2f point = points[i];
int x = cvFloor(point.x);
int y = cvFloor(point.y);
if(x >= x_max || y >= y_max)
continue;
x /= min_distance;
y /= min_distance;
counters[y*width+x]++;
}
points.clear();
int index = 0;
int offset = min_distance/2;
for(int i = 0; i < height; i++)
for(int j = 0; j < width; j++, index++) {
if(counters[index] > 0)
continue;
int x = j*min_distance+offset;
int y = i*min_distance+offset;
if(eig.at<float>(y, x) > threshold)
points.push_back(Point2f(float(x), float(y)));
}
}
void InitPry(const Mat& frame, std::vector<float>& scales, std::vector<Size>& sizes)
{
int rows = frame.rows, cols = frame.cols;
float min_size = std::min<int>(rows, cols);
int nlayers = 0;
while(min_size >= patch_size) {
min_size /= scale_stride;
nlayers++;
}
if(nlayers == 0) nlayers = 1; // at least 1 scale
scale_num = std::min<int>(scale_num, nlayers);
scales.resize(scale_num);
sizes.resize(scale_num);
scales[0] = 1.;
sizes[0] = Size(cols, rows);
for(int i = 1; i < scale_num; i++) {
scales[i] = scales[i-1] * scale_stride;
sizes[i] = Size(cvRound(cols/scales[i]), cvRound(rows/scales[i]));
}
}
void BuildPry(const std::vector<Size>& sizes, const int type, std::vector<Mat>& grey_pyr)
{
int nlayers = sizes.size();
grey_pyr.resize(nlayers);
for(int i = 0; i < nlayers; i++)
grey_pyr[i].create(sizes[i], type);
}
void DrawTrack(const std::vector<Point2f>& point, const int index, const float scale, Mat& image)
{
Point2f point0 = point[0];
point0 *= scale;
for (int j = 1; j <= index; j++) {
Point2f point1 = point[j];
point1 *= scale;
line(image, point0, point1, Scalar(0,cvFloor(255.0*(j+1.0)/float(index+1.0)),0), 2, 8, 0);
point0 = point1;
//printf("(%f,%f) \t \n",point0.x, point0.y);
}
//printf("0\t");
circle(image, point0, 3, Scalar(0,0,255), -1, 8, 0);
}
void DrawThrowTrack(const std::vector<Point2f>& point, const int index, const float scale, Mat& image)
{
Point2f point0 = point[0];
point0 *= scale;
for (int j = 1; j <= index; j++) {
Point2f point1 = point[j];
point1 *= scale;
circle(image, point0, 2, Scalar(0,255,0), -1, 8, 0);
line(image, point0, point1, Scalar(0,0,255), 3, 8, 0);
point0 = point1;
//printf("(%f,%f) \t \n",point0.x, point0.y);
}
//printf("------------------------------\n");
//circle(image, point0, 3, Scalar(0,255,0), -1, 8, 0);
}
void DrawCircle(const std::vector<Point2f>& point, const int index, const float scale, Mat& image)
{
Point2f point0 = point[0];
point0 *= scale;
for (int j = 1; j <= index; j++) {
Point2f point1 = point[j];
point1 *= scale;
point0 = point1;
}
circle(image, point0, 2, Scalar(0,255,0), -1, 8, 0);
}
void PrintDesc(std::vector<float>& desc, DescInfo& descInfo, TrackInfo& trackInfo)
{
int tStride = cvFloor(trackInfo.length/descInfo.ntCells);
float norm = 1./float(tStride);
int dim = descInfo.dim;
int pos = 0;
for(int i = 0; i < descInfo.ntCells; i++) {
std::vector<float> vec(dim);
for(int t = 0; t < tStride; t++)
for(int j = 0; j < dim; j++)
vec[j] += desc[pos++];
for(int j = 0; j < dim; j++)
printf("%.7f\t", vec[j]*norm);
}
}
//判断点是否在框中
bool inbox(int px,int py,int x,int y,int w,int h)
{
if(px>=x&&px<=(x+w)&&py>=y&&py<=(y+h))
return true;
else
return false;
}
#endif /*DESCRIPTORS_H_*/