-
Notifications
You must be signed in to change notification settings - Fork 6
/
Frustum.cpp
365 lines (315 loc) · 16.5 KB
/
Frustum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
//***********************************************************************//
// //
// - "Talk to me like I'm a 3 year old!" Programming Lessons - //
// //
// $Author: DigiBen [email protected] //
// //
// $Program: Frustum Culling //
// //
// $Description: Demonstrates checking if shapes are in view //
// //
// $Date: 8/28/01 //
// //
//***********************************************************************//
#include "main.h"
// We create an enum of the sides so we don't have to call each side 0 or 1.
// This way it makes it more understandable and readable when dealing with frustum sides.
enum FrustumSide
{
RIGHT = 0, // The RIGHT side of the frustum
LEFT = 1, // The LEFT side of the frustum
BOTTOM = 2, // The BOTTOM side of the frustum
TOP = 3, // The TOP side of the frustum
BACK = 4, // The BACK side of the frustum
FRONT = 5 // The FRONT side of the frustum
};
// Like above, instead of saying a number for the ABC and D of the plane, we
// want to be more descriptive.
enum PlaneData
{
A = 0, // The X value of the plane's normal
B = 1, // The Y value of the plane's normal
C = 2, // The Z value of the plane's normal
D = 3 // The distance the plane is from the origin
};
///////////////////////////////// NORMALIZE PLANE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This normalizes a plane (A side) from a given frustum.
/////
///////////////////////////////// NORMALIZE PLANE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
void NormalizePlane(float frustum[6][4], int side)
{
// Here we calculate the magnitude of the normal to the plane (point A B C)
// Remember that (A, B, C) is that same thing as the normal's (X, Y, Z).
// To calculate magnitude you use the equation: magnitude = sqrt( x^2 + y^2 + z^2)
float magnitude = (float)sqrt( frustum[side][A] * frustum[side][A] +
frustum[side][B] * frustum[side][B] +
frustum[side][C] * frustum[side][C] );
// Then we divide the plane's values by it's magnitude.
// This makes it easier to work with.
frustum[side][A] /= magnitude;
frustum[side][B] /= magnitude;
frustum[side][C] /= magnitude;
frustum[side][D] /= magnitude;
}
///////////////////////////////// CALCULATE FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This extracts our frustum from the projection and modelview matrix.
/////
///////////////////////////////// CALCULATE FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
void CFrustum::CalculateFrustum()
{
float proj[16]; // This will hold our projection matrix
float modl[16]; // This will hold our modelview matrix
float clip[16]; // This will hold the clipping planes
// glGetFloatv() is used to extract information about our OpenGL world.
// Below, we pass in GL_PROJECTION_MATRIX to abstract our projection matrix.
// It then stores the matrix into an array of [16].
glGetFloatv( GL_PROJECTION_MATRIX, proj );
// By passing in GL_MODELVIEW_MATRIX, we can abstract our model view matrix.
// This also stores it in an array of [16].
glGetFloatv( GL_MODELVIEW_MATRIX, modl );
// Now that we have our modelview and projection matrix, if we combine these 2 matrices,
// it will give us our clipping planes. To combine 2 matrices, we multiply them.
clip[ 0] = modl[ 0] * proj[ 0] + modl[ 1] * proj[ 4] + modl[ 2] * proj[ 8] + modl[ 3] * proj[12];
clip[ 1] = modl[ 0] * proj[ 1] + modl[ 1] * proj[ 5] + modl[ 2] * proj[ 9] + modl[ 3] * proj[13];
clip[ 2] = modl[ 0] * proj[ 2] + modl[ 1] * proj[ 6] + modl[ 2] * proj[10] + modl[ 3] * proj[14];
clip[ 3] = modl[ 0] * proj[ 3] + modl[ 1] * proj[ 7] + modl[ 2] * proj[11] + modl[ 3] * proj[15];
clip[ 4] = modl[ 4] * proj[ 0] + modl[ 5] * proj[ 4] + modl[ 6] * proj[ 8] + modl[ 7] * proj[12];
clip[ 5] = modl[ 4] * proj[ 1] + modl[ 5] * proj[ 5] + modl[ 6] * proj[ 9] + modl[ 7] * proj[13];
clip[ 6] = modl[ 4] * proj[ 2] + modl[ 5] * proj[ 6] + modl[ 6] * proj[10] + modl[ 7] * proj[14];
clip[ 7] = modl[ 4] * proj[ 3] + modl[ 5] * proj[ 7] + modl[ 6] * proj[11] + modl[ 7] * proj[15];
clip[ 8] = modl[ 8] * proj[ 0] + modl[ 9] * proj[ 4] + modl[10] * proj[ 8] + modl[11] * proj[12];
clip[ 9] = modl[ 8] * proj[ 1] + modl[ 9] * proj[ 5] + modl[10] * proj[ 9] + modl[11] * proj[13];
clip[10] = modl[ 8] * proj[ 2] + modl[ 9] * proj[ 6] + modl[10] * proj[10] + modl[11] * proj[14];
clip[11] = modl[ 8] * proj[ 3] + modl[ 9] * proj[ 7] + modl[10] * proj[11] + modl[11] * proj[15];
clip[12] = modl[12] * proj[ 0] + modl[13] * proj[ 4] + modl[14] * proj[ 8] + modl[15] * proj[12];
clip[13] = modl[12] * proj[ 1] + modl[13] * proj[ 5] + modl[14] * proj[ 9] + modl[15] * proj[13];
clip[14] = modl[12] * proj[ 2] + modl[13] * proj[ 6] + modl[14] * proj[10] + modl[15] * proj[14];
clip[15] = modl[12] * proj[ 3] + modl[13] * proj[ 7] + modl[14] * proj[11] + modl[15] * proj[15];
// Now we actually want to get the sides of the frustum. To do this we take
// the clipping planes we received above and extract the sides from them.
// This will extract the RIGHT side of the frustum
m_Frustum[RIGHT][A] = clip[ 3] - clip[ 0];
m_Frustum[RIGHT][B] = clip[ 7] - clip[ 4];
m_Frustum[RIGHT][C] = clip[11] - clip[ 8];
m_Frustum[RIGHT][D] = clip[15] - clip[12];
// Now that we have a normal (A,B,C) and a distance (D) to the plane,
// we want to normalize that normal and distance.
// Normalize the RIGHT side
NormalizePlane(m_Frustum, RIGHT);
// This will extract the LEFT side of the frustum
m_Frustum[LEFT][A] = clip[ 3] + clip[ 0];
m_Frustum[LEFT][B] = clip[ 7] + clip[ 4];
m_Frustum[LEFT][C] = clip[11] + clip[ 8];
m_Frustum[LEFT][D] = clip[15] + clip[12];
// Normalize the LEFT side
NormalizePlane(m_Frustum, LEFT);
// This will extract the BOTTOM side of the frustum
m_Frustum[BOTTOM][A] = clip[ 3] + clip[ 1];
m_Frustum[BOTTOM][B] = clip[ 7] + clip[ 5];
m_Frustum[BOTTOM][C] = clip[11] + clip[ 9];
m_Frustum[BOTTOM][D] = clip[15] + clip[13];
// Normalize the BOTTOM side
NormalizePlane(m_Frustum, BOTTOM);
// This will extract the TOP side of the frustum
m_Frustum[TOP][A] = clip[ 3] - clip[ 1];
m_Frustum[TOP][B] = clip[ 7] - clip[ 5];
m_Frustum[TOP][C] = clip[11] - clip[ 9];
m_Frustum[TOP][D] = clip[15] - clip[13];
// Normalize the TOP side
NormalizePlane(m_Frustum, TOP);
// This will extract the BACK side of the frustum
m_Frustum[BACK][A] = clip[ 3] - clip[ 2];
m_Frustum[BACK][B] = clip[ 7] - clip[ 6];
m_Frustum[BACK][C] = clip[11] - clip[10];
m_Frustum[BACK][D] = clip[15] - clip[14];
// Normalize the BACK side
NormalizePlane(m_Frustum, BACK);
// This will extract the FRONT side of the frustum
m_Frustum[FRONT][A] = clip[ 3] + clip[ 2];
m_Frustum[FRONT][B] = clip[ 7] + clip[ 6];
m_Frustum[FRONT][C] = clip[11] + clip[10];
m_Frustum[FRONT][D] = clip[15] + clip[14];
// Normalize the FRONT side
NormalizePlane(m_Frustum, FRONT);
}
// The code below will allow us to make checks within the frustum. For example,
// if we want to see if a point, a sphere, or a cube lies inside of the frustum.
// Because all of our planes point INWARDS (The normals are all pointing inside the frustum)
// we then can assume that if a point is in FRONT of all of the planes, it's inside.
///////////////////////////////// POINT IN FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This determines if a point is inside of the frustum
/////
///////////////////////////////// POINT IN FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
bool CFrustum::PointInFrustum( float x, float y, float z )
{
// If you remember the plane equation (A*x + B*y + C*z + D = 0), then the rest
// of this code should be quite obvious and easy to figure out yourself.
// In case don't know the plane equation, it might be a good idea to look
// at our Plane Collision tutorial at www.GameTutorials.com in OpenGL Tutorials.
// I will briefly go over it here. (A,B,C) is the (X,Y,Z) of the normal to the plane.
// They are the same thing... but just called ABC because you don't want to say:
// (x*x + y*y + z*z + d = 0). That would be wrong, so they substitute them.
// the (x, y, z) in the equation is the point that you are testing. The D is
// The distance the plane is from the origin. The equation ends with "= 0" because
// that is true when the point (x, y, z) is ON the plane. When the point is NOT on
// the plane, it is either a negative number (the point is behind the plane) or a
// positive number (the point is in front of the plane). We want to check if the point
// is in front of the plane, so all we have to do is go through each point and make
// sure the plane equation goes out to a positive number on each side of the frustum.
// The result (be it positive or negative) is the distance the point is front the plane.
// Go through all the sides of the frustum
for(int i = 0; i < 6; i++ )
{
// Calculate the plane equation and check if the point is behind a side of the frustum
if(m_Frustum[i][A] * x + m_Frustum[i][B] * y + m_Frustum[i][C] * z + m_Frustum[i][D] <= 0)
{
// The point was behind a side, so it ISN'T in the frustum
return false;
}
}
// The point was inside of the frustum (In front of ALL the sides of the frustum)
return true;
}
///////////////////////////////// SPHERE IN FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This determines if a sphere is inside of our frustum by it's center and radius.
/////
///////////////////////////////// SPHERE IN FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
bool CFrustum::SphereInFrustum( float x, float y, float z, float radius )
{
// Now this function is almost identical to the PointInFrustum(), except we
// now have to deal with a radius around the point. The point is the center of
// the radius. So, the point might be outside of the frustum, but it doesn't
// mean that the rest of the sphere is. It could be half and half. So instead of
// checking if it's less than 0, we need to add on the radius to that. Say the
// equation produced -2, which means the center of the sphere is the distance of
// 2 behind the plane. Well, what if the radius was 5? The sphere is still inside,
// so we would say, if(-2 < -5) then we are outside. In that case it's false,
// so we are inside of the frustum, but a distance of 3. This is reflected below.
// Go through all the sides of the frustum
for(int i = 0; i < 6; i++ )
{
// If the center of the sphere is farther away from the plane than the radius
if( m_Frustum[i][A] * x + m_Frustum[i][B] * y + m_Frustum[i][C] * z + m_Frustum[i][D] <= -radius )
{
// The distance was greater than the radius so the sphere is outside of the frustum
return false;
}
}
// The sphere was inside of the frustum!
return true;
}
///////////////////////////////// CUBE IN FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
/////
///// This determines if a cube is in or around our frustum by it's center and 1/2 it's length
/////
///////////////////////////////// CUBE IN FRUSTUM \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\*
bool CFrustum::CubeInFrustum( float x, float y, float z, float size )
{
// This test is a bit more work, but not too much more complicated.
// Basically, what is going on is, that we are given the center of the cube,
// and half the length. Think of it like a radius. Then we checking each point
// in the cube and seeing if it is inside the frustum. If a point is found in front
// of a side, then we skip to the next side. If we get to a plane that does NOT have
// a point in front of it, then it will return false.
// *Note* - This will sometimes say that a cube is inside the frustum when it isn't.
// This happens when all the corners of the bounding box are not behind any one plane.
// This is rare and shouldn't effect the overall rendering speed.
for(int i = 0; i < 6; i++ )
{
if(m_Frustum[i][A] * (x - size) + m_Frustum[i][B] * (y - size) + m_Frustum[i][C] * (z - size) + m_Frustum[i][D] > 0)
continue;
if(m_Frustum[i][A] * (x + size) + m_Frustum[i][B] * (y - size) + m_Frustum[i][C] * (z - size) + m_Frustum[i][D] > 0)
continue;
if(m_Frustum[i][A] * (x - size) + m_Frustum[i][B] * (y + size) + m_Frustum[i][C] * (z - size) + m_Frustum[i][D] > 0)
continue;
if(m_Frustum[i][A] * (x + size) + m_Frustum[i][B] * (y + size) + m_Frustum[i][C] * (z - size) + m_Frustum[i][D] > 0)
continue;
if(m_Frustum[i][A] * (x - size) + m_Frustum[i][B] * (y - size) + m_Frustum[i][C] * (z + size) + m_Frustum[i][D] > 0)
continue;
if(m_Frustum[i][A] * (x + size) + m_Frustum[i][B] * (y - size) + m_Frustum[i][C] * (z + size) + m_Frustum[i][D] > 0)
continue;
if(m_Frustum[i][A] * (x - size) + m_Frustum[i][B] * (y + size) + m_Frustum[i][C] * (z + size) + m_Frustum[i][D] > 0)
continue;
if(m_Frustum[i][A] * (x + size) + m_Frustum[i][B] * (y + size) + m_Frustum[i][C] * (z + size) + m_Frustum[i][D] > 0)
continue;
// If we get here, it isn't in the frustum
return false;
}
return true;
}
/////////////////////////////////////////////////////////////////////////////////
//
// * QUICK NOTES *
//
// WOZZERS! That seemed like an incredible amount to look at, but if you break it
// down, it's not. Frustum culling is a VERY useful thing when it comes to 3D.
// If you want a large world, there is no way you are going to send it down the
// 3D pipeline every frame and let OpenGL take care of it for you. That would
// give you a 0.001 frame rate. If you hit '+' and bring the sphere count up to
// 1000, then take off culling, you will see the HUGE difference it makes.
// Also, you wouldn't really be rendering 1000 spheres. You would most likely
// use the sphere code for larger objects. Let me explain. Say you have a bunch
// of objects, well... all you need to do is give the objects a radius, and then
// test that radius against the frustum. If that sphere is in the frustum, then you
// render that object. Also, you won't be rendering a high poly sphere so it won't
// be so slow. This goes for bounding box's too (Cubes). If you don't want to
// do a cube, it is really easy to convert the code for rectangles. Just pass in
// a width and height, instead of just a length. Remember, it's HALF the length of
// the cube, not the full length. So it would be half the width and height for a rect.
//
// This is a perfect starter for an octree tutorial. Wrap you head around the concepts
// here and then see if you can apply this to making an octree. Hopefully we will have
// a tutorial up and running for this subject soon. Once you have frustum culling,
// the next step is getting space partitioning. Either it being a BSP tree of an Octree.
//
// Let's go over a brief overview of the things we learned here:
//
// 1) First we need to abstract the frustum from OpenGL. To do that we need the
// projection and modelview matrix. To get the projection matrix we use:
//
// glGetFloatv( GL_PROJECTION_MATRIX, /* An Array of 16 floats */ );
// Then, to get the modelview matrix we use:
//
// glGetFloatv( GL_MODELVIEW_MATRIX, /* An Array of 16 floats */ );
//
// These 2 functions gives us an array of 16 floats (The matrix).
//
// 2) Next, we need to combine these 2 matrices. We do that by matrix multiplication.
//
// 3) Now that we have the 2 matrixes combined, we can abstract the sides of the frustum.
// This will give us the normal and the distance from the plane to the origin (ABC and D).
//
// 4) After abstracting a side, we want to normalize the plane data. (A B C and D).
//
// 5) Now we have our frustum, and we can check points against it using the plane equation.
// Once again, the plane equation (A*x + B*y + C*z + D = 0) says that if, point (X,Y,Z)
// times the normal of the plane (A,B,C), plus the distance of the plane from origin,
// will equal 0 if the point (X, Y, Z) lies on that plane. If it is behind the plane
// it will be a negative distance, if it's in front of the plane (the way the normal is facing)
// it will be a positive number.
//
//
// If you need more help on the plane equation and why this works, download our
// Ray Plane Intersection Tutorial at www.GameTutorials.com.
//
// That's pretty much it with frustums. There is a lot more we could talk about, but
// I don't want to complicate this tutorial more than I already have.
//
// I want to thank Mark Morley for his tutorial on frustum culling. Most of everything I got
// here comes from his teaching. If you want more in-depth, visit his tutorial at:
//
// http://www.markmorley.com/opengl/frustumculling.html
//
// Good luck!
//
//
// Ben Humphrey (DigiBen)
// Game Programmer
// Co-Web Host of www.GameTutorials.com
//
//