diff --git a/src/core/MOM.F90 b/src/core/MOM.F90 index bcba4d37c7..e1f31b7558 100644 --- a/src/core/MOM.F90 +++ b/src/core/MOM.F90 @@ -77,6 +77,9 @@ module MOM use MOM_dynamics_split_RK2, only : step_MOM_dyn_split_RK2, register_restarts_dyn_split_RK2 use MOM_dynamics_split_RK2, only : initialize_dyn_split_RK2, end_dyn_split_RK2 use MOM_dynamics_split_RK2, only : MOM_dyn_split_RK2_CS, remap_dyn_split_rk2_aux_vars +use MOM_dynamics_split_RK2b, only : step_MOM_dyn_split_RK2b, register_restarts_dyn_split_RK2b +use MOM_dynamics_split_RK2b, only : initialize_dyn_split_RK2b, end_dyn_split_RK2b +use MOM_dynamics_split_RK2b, only : MOM_dyn_split_RK2b_CS, remap_dyn_split_RK2b_aux_vars use MOM_dynamics_unsplit_RK2, only : step_MOM_dyn_unsplit_RK2, register_restarts_dyn_unsplit_RK2 use MOM_dynamics_unsplit_RK2, only : initialize_dyn_unsplit_RK2, end_dyn_unsplit_RK2 use MOM_dynamics_unsplit_RK2, only : MOM_dyn_unsplit_RK2_CS @@ -284,6 +287,9 @@ module MOM logical :: do_dynamics !< If false, does not call step_MOM_dyn_*. This is an !! undocumented run-time flag that is fragile. logical :: split !< If true, use the split time stepping scheme. + logical :: use_alt_split !< If true, use a version of the split explicit time stepping + !! with a heavier emphasis on consistent tranports between the + !! layered and barotroic variables. logical :: use_RK2 !< If true, use RK2 instead of RK3 in unsplit mode !! (i.e., no split between barotropic and baroclinic). logical :: interface_filter !< If true, apply an interface height filter immediately @@ -379,6 +385,8 @@ module MOM !< Pointer to the control structure used for the unsplit RK2 dynamics type(MOM_dyn_split_RK2_CS), pointer :: dyn_split_RK2_CSp => NULL() !< Pointer to the control structure used for the mode-split RK2 dynamics + type(MOM_dyn_split_RK2b_CS), pointer :: dyn_split_RK2b_CSp => NULL() + !< Pointer to the control structure used for an alternate version of the mode-split RK2 dynamics type(thickness_diffuse_CS) :: thickness_diffuse_CSp !< Pointer to the control structure used for the isopycnal height diffusive transport. !! This is also common referred to as Gent-McWilliams diffusion @@ -1220,10 +1228,17 @@ subroutine step_MOM_dynamics(forces, p_surf_begin, p_surf_end, dt, dt_thermo, & endif endif - call step_MOM_dyn_split_RK2(u, v, h, CS%tv, CS%visc, Time_local, dt, forces, & - p_surf_begin, p_surf_end, CS%uh, CS%vh, CS%uhtr, CS%vhtr, & - CS%eta_av_bc, G, GV, US, CS%dyn_split_RK2_CSp, calc_dtbt, CS%VarMix, & - CS%MEKE, CS%thickness_diffuse_CSp, CS%pbv, waves=waves) + if (CS%use_alt_split) then + call step_MOM_dyn_split_RK2b(u, v, h, CS%tv, CS%visc, Time_local, dt, forces, & + p_surf_begin, p_surf_end, CS%uh, CS%vh, CS%uhtr, CS%vhtr, & + CS%eta_av_bc, G, GV, US, CS%dyn_split_RK2b_CSp, calc_dtbt, CS%VarMix, & + CS%MEKE, CS%thickness_diffuse_CSp, CS%pbv, waves=waves) + else + call step_MOM_dyn_split_RK2(u, v, h, CS%tv, CS%visc, Time_local, dt, forces, & + p_surf_begin, p_surf_end, CS%uh, CS%vh, CS%uhtr, CS%vhtr, & + CS%eta_av_bc, G, GV, US, CS%dyn_split_RK2_CSp, calc_dtbt, CS%VarMix, & + CS%MEKE, CS%thickness_diffuse_CSp, CS%pbv, waves=waves) + endif if (showCallTree) call callTree_waypoint("finished step_MOM_dyn_split (step_MOM)") elseif (CS%do_dynamics) then ! ------------------------------------ not SPLIT @@ -1646,8 +1661,12 @@ subroutine step_MOM_thermo(CS, G, GV, US, u, v, h, tv, fluxes, dtdia, & if (allocated(tv%SpV_avg)) tv%valid_SpV_halo = -1 ! Record that SpV_avg is no longer valid. if (CS%remap_aux_vars) then - if (CS%split) & + if (CS%split .and. CS%use_alt_split) then + call remap_dyn_split_RK2b_aux_vars(G, GV, CS%dyn_split_RK2b_CSp, h_old_u, h_old_v, & + h_new_u, h_new_v, CS%ALE_CSp) + elseif (CS%split) then call remap_dyn_split_RK2_aux_vars(G, GV, CS%dyn_split_RK2_CSp, h_old_u, h_old_v, h_new_u, h_new_v, CS%ALE_CSp) + endif if (associated(CS%OBC)) then call pass_var(h, G%Domain, complete=.false.) @@ -2154,6 +2173,10 @@ subroutine initialize_MOM(Time, Time_init, param_file, dirs, CS, & call get_param(param_file, "MOM", "SPLIT", CS%split, & "Use the split time stepping if true.", default=.true.) + call get_param(param_file, "MOM", "SPLIT_RK2B", CS%use_alt_split, & + "If true, use a version of the split explicit time stepping with a heavier "//& + "emphasis on consistent tranports between the layered and barotroic variables.", & + default=.false., do_not_log=.not.CS%split) if (CS%split) then CS%use_RK2 = .false. else @@ -2771,7 +2794,10 @@ subroutine initialize_MOM(Time, Time_init, param_file, dirs, CS, & restart_CSp => CS%restart_CS call set_restart_fields(GV, US, param_file, CS, restart_CSp) - if (CS%split) then + if (CS%split .and. CS%use_alt_split) then + call register_restarts_dyn_split_RK2b(HI, GV, US, param_file, & + CS%dyn_split_RK2b_CSp, restart_CSp, CS%uh, CS%vh) + elseif (CS%split) then call register_restarts_dyn_split_RK2(HI, GV, US, param_file, & CS%dyn_split_RK2_CSp, restart_CSp, CS%uh, CS%vh) elseif (CS%use_RK2) then @@ -3157,12 +3183,19 @@ subroutine initialize_MOM(Time, Time_init, param_file, dirs, CS, & if (CS%split) then allocate(eta(SZI_(G),SZJ_(G)), source=0.0) - call initialize_dyn_split_RK2(CS%u, CS%v, CS%h, CS%uh, CS%vh, eta, Time, & + if (CS%use_alt_split) then + call initialize_dyn_split_RK2b(CS%u, CS%v, CS%h, CS%uh, CS%vh, eta, Time, & + G, GV, US, param_file, diag, CS%dyn_split_RK2b_CSp, restart_CSp, & + CS%dt, CS%ADp, CS%CDp, MOM_internal_state, CS%VarMix, CS%MEKE, & + CS%thickness_diffuse_CSp, CS%OBC, CS%update_OBC_CSp, CS%ALE_CSp, CS%set_visc_CSp, & + CS%visc, dirs, CS%ntrunc, CS%pbv, calc_dtbt=calc_dtbt, cont_stencil=CS%cont_stencil) + else + call initialize_dyn_split_RK2(CS%u, CS%v, CS%h, CS%uh, CS%vh, eta, Time, & G, GV, US, param_file, diag, CS%dyn_split_RK2_CSp, restart_CSp, & CS%dt, CS%ADp, CS%CDp, MOM_internal_state, CS%VarMix, CS%MEKE, & - CS%thickness_diffuse_CSp, & - CS%OBC, CS%update_OBC_CSp, CS%ALE_CSp, CS%set_visc_CSp, & + CS%thickness_diffuse_CSp, CS%OBC, CS%update_OBC_CSp, CS%ALE_CSp, CS%set_visc_CSp, & CS%visc, dirs, CS%ntrunc, CS%pbv, calc_dtbt=calc_dtbt, cont_stencil=CS%cont_stencil) + endif if (CS%dtbt_reset_period > 0.0) then CS%dtbt_reset_interval = real_to_time(US%T_to_s*CS%dtbt_reset_period) ! Set dtbt_reset_time to be the next even multiple of dtbt_reset_interval. @@ -4116,7 +4149,9 @@ subroutine MOM_end(CS) if (CS%offline_tracer_mode) call offline_transport_end(CS%offline_CSp) - if (CS%split) then + if (CS%split .and. CS%use_alt_split) then + call end_dyn_split_RK2b(CS%dyn_split_RK2b_CSp) + elseif (CS%split) then call end_dyn_split_RK2(CS%dyn_split_RK2_CSp) elseif (CS%use_RK2) then call end_dyn_unsplit_RK2(CS%dyn_unsplit_RK2_CSp) diff --git a/src/core/MOM_dynamics_split_RK2b.F90 b/src/core/MOM_dynamics_split_RK2b.F90 new file mode 100644 index 0000000000..a289014313 --- /dev/null +++ b/src/core/MOM_dynamics_split_RK2b.F90 @@ -0,0 +1,1842 @@ +!> Time step the adiabatic dynamic core of MOM using RK2 method with greater use of the +!! time-filtered velocities and less inheritance of tedencies from the previous step in the +!! predictor step than in the original MOM_dyanmics_split_RK2. +module MOM_dynamics_split_RK2b + +! This file is part of MOM6. See LICENSE.md for the license. + +use MOM_variables, only : vertvisc_type, thermo_var_ptrs, porous_barrier_type +use MOM_variables, only : BT_cont_type, alloc_bt_cont_type, dealloc_bt_cont_type +use MOM_variables, only : accel_diag_ptrs, ocean_internal_state, cont_diag_ptrs +use MOM_forcing_type, only : mech_forcing + +use MOM_checksum_packages, only : MOM_thermo_chksum, MOM_state_chksum, MOM_accel_chksum +use MOM_cpu_clock, only : cpu_clock_id, cpu_clock_begin, cpu_clock_end +use MOM_cpu_clock, only : CLOCK_COMPONENT, CLOCK_SUBCOMPONENT +use MOM_cpu_clock, only : CLOCK_MODULE_DRIVER, CLOCK_MODULE, CLOCK_ROUTINE +use MOM_diag_mediator, only : diag_mediator_init, enable_averages +use MOM_diag_mediator, only : disable_averaging, post_data, safe_alloc_ptr +use MOM_diag_mediator, only : post_product_u, post_product_sum_u +use MOM_diag_mediator, only : post_product_v, post_product_sum_v +use MOM_diag_mediator, only : register_diag_field, register_static_field +use MOM_diag_mediator, only : set_diag_mediator_grid, diag_ctrl, diag_update_remap_grids +use MOM_domains, only : To_South, To_West, To_All, CGRID_NE, SCALAR_PAIR +use MOM_domains, only : To_North, To_East, Omit_Corners +use MOM_domains, only : create_group_pass, do_group_pass, group_pass_type +use MOM_domains, only : start_group_pass, complete_group_pass, pass_var, pass_vector +use MOM_debugging, only : hchksum, uvchksum +use MOM_error_handler, only : MOM_error, MOM_mesg, FATAL, WARNING, is_root_pe +use MOM_error_handler, only : MOM_set_verbosity, callTree_showQuery +use MOM_error_handler, only : callTree_enter, callTree_leave, callTree_waypoint +use MOM_file_parser, only : get_param, log_version, param_file_type +use MOM_get_input, only : directories +use MOM_io, only : vardesc, var_desc, EAST_FACE, NORTH_FACE +use MOM_restart, only : register_restart_field, register_restart_pair +use MOM_restart, only : query_initialized, set_initialized, save_restart +use MOM_restart, only : only_read_from_restarts +use MOM_restart, only : restart_init, is_new_run, MOM_restart_CS +use MOM_time_manager, only : time_type, time_type_to_real, operator(+) +use MOM_time_manager, only : operator(-), operator(>), operator(*), operator(/) + +use MOM_ALE, only : ALE_CS, ALE_remap_velocities +use MOM_barotropic, only : barotropic_init, btstep, btcalc, bt_mass_source +use MOM_barotropic, only : register_barotropic_restarts, set_dtbt, barotropic_CS +use MOM_barotropic, only : barotropic_end +use MOM_boundary_update, only : update_OBC_data, update_OBC_CS +use MOM_continuity, only : continuity, continuity_CS +use MOM_continuity, only : continuity_init, continuity_stencil +use MOM_CoriolisAdv, only : CorAdCalc, CoriolisAdv_CS +use MOM_CoriolisAdv, only : CoriolisAdv_init, CoriolisAdv_end +use MOM_debugging, only : check_redundant +use MOM_grid, only : ocean_grid_type +use MOM_hor_index, only : hor_index_type +use MOM_hor_visc, only : horizontal_viscosity, hor_visc_CS +use MOM_hor_visc, only : hor_visc_init, hor_visc_end +use MOM_interface_heights, only : thickness_to_dz, find_col_avg_SpV +use MOM_lateral_mixing_coeffs, only : VarMix_CS +use MOM_MEKE_types, only : MEKE_type +use MOM_open_boundary, only : ocean_OBC_type, radiation_open_bdry_conds +use MOM_open_boundary, only : open_boundary_zero_normal_flow, open_boundary_query +use MOM_open_boundary, only : open_boundary_test_extern_h, update_OBC_ramp +use MOM_PressureForce, only : PressureForce, PressureForce_CS +use MOM_PressureForce, only : PressureForce_init +use MOM_set_visc, only : set_viscous_ML, set_visc_CS +use MOM_thickness_diffuse, only : thickness_diffuse_CS +use MOM_self_attr_load, only : SAL_CS +use MOM_self_attr_load, only : SAL_init, SAL_end +use MOM_tidal_forcing, only : tidal_forcing_CS +use MOM_tidal_forcing, only : tidal_forcing_init, tidal_forcing_end +use MOM_unit_scaling, only : unit_scale_type +use MOM_vert_friction, only : vertvisc, vertvisc_coef, vertvisc_remnant +use MOM_vert_friction, only : vertvisc_init, vertvisc_end, vertvisc_CS +use MOM_vert_friction, only : updateCFLtruncationValue, vertFPmix +use MOM_verticalGrid, only : verticalGrid_type, get_thickness_units +use MOM_verticalGrid, only : get_flux_units, get_tr_flux_units +use MOM_wave_interface, only: wave_parameters_CS, Stokes_PGF +use MOM_CVMix_KPP, only : KPP_get_BLD, KPP_CS +use MOM_energetic_PBL, only : energetic_PBL_get_MLD, energetic_PBL_CS +use MOM_diabatic_driver, only : diabatic_CS, extract_diabatic_member + +implicit none ; private + +#include + +!> MOM_dynamics_split_RK2b module control structure +type, public :: MOM_dyn_split_RK2b_CS ; private + real ALLOCABLE_, dimension(NIMEMB_PTR_,NJMEM_,NKMEM_) :: & + CAu, & !< CAu = f*v - u.grad(u) [L T-2 ~> m s-2] + CAu_pred, & !< The predictor step value of CAu = f*v - u.grad(u) [L T-2 ~> m s-2] + PFu, & !< PFu = -dM/dx [L T-2 ~> m s-2] + PFu_Stokes, & !< PFu_Stokes = -d/dx int_r (u_L*duS/dr) [L T-2 ~> m s-2] + diffu !< Zonal acceleration due to convergence of the along-isopycnal stress tensor [L T-2 ~> m s-2] + + real ALLOCABLE_, dimension(NIMEM_,NJMEMB_PTR_,NKMEM_) :: & + CAv, & !< CAv = -f*u - u.grad(v) [L T-2 ~> m s-2] + CAv_pred, & !< The predictor step value of CAv = -f*u - u.grad(v) [L T-2 ~> m s-2] + PFv, & !< PFv = -dM/dy [L T-2 ~> m s-2] + PFv_Stokes, & !< PFv_Stokes = -d/dy int_r (v_L*dvS/dr) [L T-2 ~> m s-2] + diffv !< Meridional acceleration due to convergence of the along-isopycnal stress tensor [L T-2 ~> m s-2] + + real ALLOCABLE_, dimension(NIMEMB_PTR_,NJMEM_,NKMEM_) :: visc_rem_u + !< Both the fraction of the zonal momentum originally in a + !! layer that remains after a time-step of viscosity, and the + !! fraction of a time-step worth of a barotropic acceleration + !! that a layer experiences after viscosity is applied [nondim]. + !! Nondimensional between 0 (at the bottom) and 1 (far above). + real ALLOCABLE_, dimension(NIMEMB_PTR_,NJMEM_,NKMEM_) :: u_accel_bt + !< The zonal layer accelerations due to the difference between + !! the barotropic accelerations and the baroclinic accelerations + !! that were fed into the barotopic calculation [L T-2 ~> m s-2] + real ALLOCABLE_, dimension(NIMEM_,NJMEMB_PTR_,NKMEM_) :: visc_rem_v + !< Both the fraction of the meridional momentum originally in + !! a layer that remains after a time-step of viscosity, and the + !! fraction of a time-step worth of a barotropic acceleration + !! that a layer experiences after viscosity is applied [nondim]. + !! Nondimensional between 0 (at the bottom) and 1 (far above). + real ALLOCABLE_, dimension(NIMEM_,NJMEMB_PTR_,NKMEM_) :: v_accel_bt + !< The meridional layer accelerations due to the difference between + !! the barotropic accelerations and the baroclinic accelerations + !! that were fed into the barotopic calculation [L T-2 ~> m s-2] + + ! The following variables are only used with the split time stepping scheme. + real ALLOCABLE_, dimension(NIMEM_,NJMEM_) :: eta !< Instantaneous free surface height (in Boussinesq + !! mode) or column mass anomaly (in non-Boussinesq + !! mode) [H ~> m or kg m-2] + real ALLOCABLE_, dimension(NIMEMB_PTR_,NJMEM_,NKMEM_) :: u_av !< layer x-velocity with vertical mean replaced by + !! time-mean barotropic velocity over a baroclinic + !! timestep [L T-1 ~> m s-1] + real ALLOCABLE_, dimension(NIMEM_,NJMEMB_PTR_,NKMEM_) :: v_av !< layer y-velocity with vertical mean replaced by + !! time-mean barotropic velocity over a baroclinic + !! timestep [L T-1 ~> m s-1] + real ALLOCABLE_, dimension(NIMEM_,NJMEM_,NKMEM_) :: h_av !< arithmetic mean of two successive layer + !! thicknesses [H ~> m or kg m-2] + real ALLOCABLE_, dimension(NIMEM_,NJMEM_) :: eta_PF !< instantaneous SSH used in calculating PFu and + !! PFv [H ~> m or kg m-2] + real ALLOCABLE_, dimension(NIMEMB_PTR_,NJMEM_) :: uhbt !< average x-volume or mass flux determined by the + !! barotropic solver [H L2 T-1 ~> m3 s-1 or kg s-1]. + !! uhbt is roughly equal to the vertical sum of uh. + real ALLOCABLE_, dimension(NIMEM_,NJMEMB_PTR_) :: vhbt !< average y-volume or mass flux determined by the + !! barotropic solver [H L2 T-1 ~> m3 s-1 or kg s-1]. + !! vhbt is roughly equal to vertical sum of vh. + real ALLOCABLE_, dimension(NIMEM_,NJMEM_,NKMEM_) :: pbce !< pbce times eta gives the baroclinic pressure + !! anomaly in each layer due to free surface height + !! anomalies [L2 H-1 T-2 ~> m s-2 or m4 kg-1 s-2]. + type(KPP_CS), pointer :: KPP_CSp => NULL() !< KPP control structure needed to ge + type(energetic_PBL_CS), pointer :: energetic_PBL_CSp => NULL() !< ePBL control structure + + real, pointer, dimension(:,:) :: taux_bot => NULL() !< frictional x-bottom stress from the ocean + !! to the seafloor [R L Z T-2 ~> Pa] + real, pointer, dimension(:,:) :: tauy_bot => NULL() !< frictional y-bottom stress from the ocean + !! to the seafloor [R L Z T-2 ~> Pa] + type(BT_cont_type), pointer :: BT_cont => NULL() !< A structure with elements that describe the + !! effective summed open face areas as a function + !! of barotropic flow. + + logical :: split_bottom_stress !< If true, provide the bottom stress + !! calculated by the vertical viscosity to the + !! barotropic solver. + logical :: calc_dtbt !< If true, calculate the barotropic time-step + !! dynamically. + logical :: store_CAu !< If true, store the Coriolis and advective accelerations at the + !! end of the timestep for use in the next predictor step. + logical :: CAu_pred_stored !< If true, the Coriolis and advective accelerations at the + !! end of the timestep have been stored for use in the next + !! predictor step. This is used to accomodate various generations + !! of restart files. + logical :: calculate_SAL !< If true, calculate self-attraction and loading. + logical :: use_tides !< If true, tidal forcing is enabled. + logical :: remap_aux !< If true, apply ALE remapping to all of the auxiliary 3-D + !! variables that are needed to reproduce across restarts, + !! similarly to what is done with the primary state variables. + + real :: be !< A nondimensional number from 0.5 to 1 that controls + !! the backward weighting of the time stepping scheme [nondim] + real :: begw !< A nondimensional number from 0 to 1 that controls + !! the extent to which the treatment of gravity waves + !! is forward-backward (0) or simulated backward + !! Euler (1) [nondim]. 0 is often used. + logical :: debug !< If true, write verbose checksums for debugging purposes. + logical :: debug_OBC !< If true, do debugging calls for open boundary conditions. + logical :: fpmix = .false. !< If true, applies profiles of momentum flux magnitude and direction. + logical :: module_is_initialized = .false. !< Record whether this module has been initialized. + + !>@{ Diagnostic IDs + integer :: id_uold = -1, id_vold = -1 + integer :: id_uh = -1, id_vh = -1 + integer :: id_umo = -1, id_vmo = -1 + integer :: id_umo_2d = -1, id_vmo_2d = -1 + integer :: id_PFu = -1, id_PFv = -1 + integer :: id_CAu = -1, id_CAv = -1 + integer :: id_ueffA = -1, id_veffA = -1 + ! integer :: id_hf_PFu = -1, id_hf_PFv = -1 + integer :: id_h_PFu = -1, id_h_PFv = -1 + integer :: id_hf_PFu_2d = -1, id_hf_PFv_2d = -1 + integer :: id_intz_PFu_2d = -1, id_intz_PFv_2d = -1 + integer :: id_PFu_visc_rem = -1, id_PFv_visc_rem = -1 + ! integer :: id_hf_CAu = -1, id_hf_CAv = -1 + integer :: id_h_CAu = -1, id_h_CAv = -1 + integer :: id_hf_CAu_2d = -1, id_hf_CAv_2d = -1 + integer :: id_intz_CAu_2d = -1, id_intz_CAv_2d = -1 + integer :: id_CAu_visc_rem = -1, id_CAv_visc_rem = -1 + integer :: id_deta_dt = -1 + + ! Split scheme only. + integer :: id_uav = -1, id_vav = -1 + integer :: id_u_BT_accel = -1, id_v_BT_accel = -1 + ! integer :: id_hf_u_BT_accel = -1, id_hf_v_BT_accel = -1 + integer :: id_h_u_BT_accel = -1, id_h_v_BT_accel = -1 + integer :: id_hf_u_BT_accel_2d = -1, id_hf_v_BT_accel_2d = -1 + integer :: id_intz_u_BT_accel_2d = -1, id_intz_v_BT_accel_2d = -1 + integer :: id_u_BT_accel_visc_rem = -1, id_v_BT_accel_visc_rem = -1 + !>@} + + type(diag_ctrl), pointer :: diag => NULL() !< A structure that is used to regulate the + !! timing of diagnostic output. + type(accel_diag_ptrs), pointer :: ADp => NULL() !< A structure pointing to the various + !! accelerations in the momentum equations, + !! which can later be used to calculate + !! derived diagnostics like energy budgets. + type(accel_diag_ptrs), pointer :: AD_pred => NULL() !< A structure pointing to the various + !! predictor step accelerations in the momentum equations, + !! which can be used to debug truncations. + type(cont_diag_ptrs), pointer :: CDp => NULL() !< A structure with pointers to various + !! terms in the continuity equations, + !! which can later be used to calculate + !! derived diagnostics like energy budgets. + + ! The remainder of the structure points to child subroutines' control structures. + !> A pointer to the horizontal viscosity control structure + type(hor_visc_CS) :: hor_visc + !> A pointer to the continuity control structure + type(continuity_CS) :: continuity_CSp + !> The CoriolisAdv control structure + type(CoriolisAdv_CS) :: CoriolisAdv + !> A pointer to the PressureForce control structure + type(PressureForce_CS) :: PressureForce_CSp + !> A pointer to a structure containing interface height diffusivities + type(vertvisc_CS), pointer :: vertvisc_CSp => NULL() + !> A pointer to the set_visc control structure + type(set_visc_CS), pointer :: set_visc_CSp => NULL() + !> A pointer to the barotropic stepping control structure + type(barotropic_CS) :: barotropic_CSp + !> A pointer to the SAL control structure + type(SAL_CS) :: SAL_CSp + !> A pointer to the tidal forcing control structure + type(tidal_forcing_CS) :: tides_CSp + !> A pointer to the ALE control structure. + type(ALE_CS), pointer :: ALE_CSp => NULL() + + type(ocean_OBC_type), pointer :: OBC => NULL() !< A pointer to an open boundary + !! condition type that specifies whether, where, and what open boundary + !! conditions are used. If no open BCs are used, this pointer stays + !! nullified. Flather OBCs use open boundary_CS as well. + !> A pointer to the update_OBC control structure + type(update_OBC_CS), pointer :: update_OBC_CSp => NULL() + + type(group_pass_type) :: pass_eta !< Structure for group halo pass + type(group_pass_type) :: pass_visc_rem !< Structure for group halo pass + type(group_pass_type) :: pass_uvp !< Structure for group halo pass + type(group_pass_type) :: pass_hp_uv !< Structure for group halo pass + type(group_pass_type) :: pass_uv !< Structure for group halo pass + type(group_pass_type) :: pass_h !< Structure for group halo pass + type(group_pass_type) :: pass_av_uvh !< Structure for group halo pass + +end type MOM_dyn_split_RK2b_CS + + +public step_MOM_dyn_split_RK2b +public register_restarts_dyn_split_RK2b +public initialize_dyn_split_RK2b +public remap_dyn_split_RK2b_aux_vars +public end_dyn_split_RK2b + +!>@{ CPU time clock IDs +integer :: id_clock_Cor, id_clock_pres, id_clock_vertvisc +integer :: id_clock_horvisc, id_clock_mom_update +integer :: id_clock_continuity, id_clock_thick_diff +integer :: id_clock_btstep, id_clock_btcalc, id_clock_btforce +integer :: id_clock_pass, id_clock_pass_init +!>@} + +contains + +!> RK2 splitting for time stepping MOM adiabatic dynamics +subroutine step_MOM_dyn_split_RK2b(u_inst, v_inst, h, tv, visc, Time_local, dt, forces, & + p_surf_begin, p_surf_end, uh, vh, uhtr, vhtr, eta_av, & + G, GV, US, CS, calc_dtbt, VarMix, MEKE, thickness_diffuse_CSp, pbv, Waves) + type(ocean_grid_type), intent(inout) :: G !< Ocean grid structure + type(verticalGrid_type), intent(in) :: GV !< Ocean vertical grid structure + type(unit_scale_type), intent(in) :: US !< A dimensional unit scaling type + real, dimension(SZIB_(G),SZJ_(G),SZK_(GV)), & + target, intent(inout) :: u_inst !< Zonal velocity [L T-1 ~> m s-1] + real, dimension(SZI_(G),SZJB_(G),SZK_(GV)), & + target, intent(inout) :: v_inst !< Meridional velocity [L T-1 ~> m s-1] + real, dimension(SZI_(G),SZJ_(G),SZK_(GV)), & + intent(inout) :: h !< Layer thickness [H ~> m or kg m-2] + type(thermo_var_ptrs), intent(in) :: tv !< Thermodynamic type + type(vertvisc_type), intent(inout) :: visc !< Vertical visc, bottom drag, and related + type(time_type), intent(in) :: Time_local !< Model time at end of time step + real, intent(in) :: dt !< Baroclinic dynamics time step [T ~> s] + type(mech_forcing), intent(in) :: forces !< A structure with the driving mechanical forces + real, dimension(:,:), pointer :: p_surf_begin !< Surface pressure at the start of this dynamic + !! time step [R L2 T-2 ~> Pa] + real, dimension(:,:), pointer :: p_surf_end !< Surface pressure at the end of this dynamic + !! time step [R L2 T-2 ~> Pa] + real, dimension(SZIB_(G),SZJ_(G),SZK_(GV)), & + target, intent(inout) :: uh !< Zonal volume or mass transport + !! [H L2 T-1 ~> m3 s-1 or kg s-1] + real, dimension(SZI_(G),SZJB_(G),SZK_(GV)), & + target, intent(inout) :: vh !< Meridional volume or mass transport + !! [H L2 T-1 ~> m3 s-1 or kg s-1] + real, dimension(SZIB_(G),SZJ_(G),SZK_(GV)), & + intent(inout) :: uhtr !< Accumulated zonal volume or mass transport + !! since last tracer advection [H L2 ~> m3 or kg] + real, dimension(SZI_(G),SZJB_(G),SZK_(GV)), & + intent(inout) :: vhtr !< Accumulated meridional volume or mass transport + !! since last tracer advection [H L2 ~> m3 or kg] + real, dimension(SZI_(G),SZJ_(G)), intent(out) :: eta_av !< Free surface height or column mass + !! averaged over time step [H ~> m or kg m-2] + type(MOM_dyn_split_RK2b_CS), pointer :: CS !< Module control structure + logical, intent(in) :: calc_dtbt !< If true, recalculate the barotropic time step + type(VarMix_CS), intent(inout) :: VarMix !< Variable mixing control structure + type(MEKE_type), intent(inout) :: MEKE !< MEKE fields + type(thickness_diffuse_CS), intent(inout) :: thickness_diffuse_CSp !< Pointer to a structure containing + !! interface height diffusivities + type(porous_barrier_type), intent(in) :: pbv !< porous barrier fractional cell metrics + type(wave_parameters_CS), optional, pointer :: Waves !< A pointer to a structure containing + !! fields related to the surface wave conditions + + ! local variables + real, dimension(SZIB_(G),SZJ_(G),SZK_(GV)) :: up ! Predicted zonal velocity [L T-1 ~> m s-1]. + real, dimension(SZI_(G),SZJB_(G),SZK_(GV)) :: vp ! Predicted meridional velocity [L T-1 ~> m s-1]. + real, dimension(SZI_(G),SZJ_(G),SZK_(GV)) :: hp ! Predicted thickness [H ~> m or kg m-2]. + real, dimension(SZI_(G),SZJ_(G),SZK_(GV)) :: dz ! Distance between the interfaces around a layer [Z ~> m] + real, dimension(SZIB_(G),SZJ_(G),SZK_(GV)) :: ueffA ! Effective Area of U-Faces [H L ~> m2] + real, dimension(SZI_(G),SZJB_(G),SZK_(GV)) :: veffA ! Effective Area of V-Faces [H L ~> m2] + real, dimension(SZIB_(G),SZJ_(G),SZK_(GV)) :: u_bc_accel ! The summed zonal baroclinic accelerations + ! of each layer calculated by the non-barotropic + ! part of the model [L T-2 ~> m s-2] + real, dimension(SZI_(G),SZJB_(G),SZK_(GV)) :: v_bc_accel ! The summed meridional baroclinic accelerations + ! of each layer calculated by the non-barotropic + ! part of the model [L T-2 ~> m s-2] + + real, dimension(SZIB_(G),SZJ_(G),SZK_(GV)), target :: uh_in ! The zonal mass transports that would be + ! obtained using the initial velocities [H L2 T-1 ~> m3 s-1 or kg s-1] + real, dimension(SZI_(G),SZJB_(G),SZK_(GV)), target :: vh_in ! The meridional mass transports that would be + ! obtained using the initial velocities [H L2 T-1 ~> m3 s-1 or kg s-1] + + real, dimension(SZI_(G),SZJ_(G)) :: eta_pred ! The predictor value of the free surface height + ! or column mass [H ~> m or kg m-2] + real, dimension(SZI_(G),SZJ_(G)) :: SpV_avg ! The column averaged specific volume [R-1 ~> m3 kg-1] + real, dimension(SZI_(G),SZJ_(G)) :: deta_dt ! A diagnostic of the time derivative of the free surface + ! height or column mass [H T-1 ~> m s-1 or kg m-2 s-1] + + real, dimension(SZIB_(G),SZJ_(G),SZK_(GV)) :: u_old_rad_OBC ! The starting zonal velocities, which are + ! saved for use in the Flather open boundary condition code [L T-1 ~> m s-1] + real, dimension(SZI_(G),SZJB_(G),SZK_(GV)) :: v_old_rad_OBC ! The starting meridional velocities, which are + ! saved for use in the Flather open boundary condition code [L T-1 ~> m s-1] + + ! GMM, TODO: make these allocatable? + real, dimension(SZIB_(G),SZJ_(G),SZK_(GV)) :: uold ! u-velocity before vert_visc is applied, for fpmix + ! [L T-1 ~> m s-1] + real, dimension(SZI_(G),SZJB_(G),SZK_(GV)) :: vold ! v-velocity before vert_visc is applied, for fpmix + ! [L T-1 ~> m s-1] + real :: pres_to_eta ! A factor that converts pressures to the units of eta + ! [H T2 R-1 L-2 ~> m Pa-1 or kg m-2 Pa-1] + real, pointer, dimension(:,:) :: & + p_surf => NULL(), & ! A pointer to the surface pressure [R L2 T-2 ~> Pa] + eta_PF_start => NULL(), & ! The value of eta that corresponds to the starting pressure + ! for the barotropic solver [H ~> m or kg m-2] + taux_bot => NULL(), & ! A pointer to the zonal bottom stress in some cases [R L Z T-2 ~> Pa] + tauy_bot => NULL(), & ! A pointer to the meridional bottom stress in some cases [R L Z T-2 ~> Pa] + ! This pointer is just used as shorthand for CS%eta. + eta => NULL() ! A pointer to the instantaneous free surface height (in Boussinesq + ! mode) or column mass anomaly (in non-Boussinesq mode) [H ~> m or kg m-2] + + real, pointer, dimension(:,:,:) :: & + ! These pointers are used to alter which fields are passed to btstep with various options: + u_ptr => NULL(), & ! A pointer to a zonal velocity [L T-1 ~> m s-1] + v_ptr => NULL(), & ! A pointer to a meridional velocity [L T-1 ~> m s-1] + uh_ptr => NULL(), & ! A pointer to a zonal volume or mass transport [H L2 T-1 ~> m3 s-1 or kg s-1] + vh_ptr => NULL(), & ! A pointer to a meridional volume or mass transport [H L2 T-1 ~> m3 s-1 or kg s-1] + ! These pointers are just used as shorthand for CS%u_av, CS%v_av, and CS%h_av. + u_av, & ! The zonal velocity time-averaged over a time step [L T-1 ~> m s-1]. + v_av, & ! The meridional velocity time-averaged over a time step [L T-1 ~> m s-1]. + h_av ! The layer thickness time-averaged over a time step [H ~> m or kg m-2]. + + real, dimension(SZI_(G),SZJ_(G)) :: hbl ! Boundary layer depth from Cvmix [H ~> m or kg m-2] + real :: dt_pred ! The time step for the predictor part of the baroclinic time stepping [T ~> s]. + real :: Idt_bc ! Inverse of the baroclinic timestep [T-1 ~> s-1] + logical :: dyn_p_surf + logical :: BT_cont_BT_thick ! If true, use the BT_cont_type to estimate the + ! relative weightings of the layers in calculating + ! the barotropic accelerations. + logical :: Use_Stokes_PGF ! If true, add Stokes PGF to hydrostatic PGF + !---For group halo pass + logical :: showCallTree, sym + + integer :: i, j, k, is, ie, js, je, Isq, Ieq, Jsq, Jeq, nz + integer :: cont_stencil, obc_stencil + + is = G%isc ; ie = G%iec ; js = G%jsc ; je = G%jec ; nz = GV%ke + Isq = G%IscB ; Ieq = G%IecB ; Jsq = G%JscB ; Jeq = G%JecB + u_av => CS%u_av ; v_av => CS%v_av ; h_av => CS%h_av ; eta => CS%eta + + Idt_bc = 1.0 / dt + + sym = G%Domain%symmetric ! switch to include symmetric domain in checksums + + showCallTree = callTree_showQuery() + if (showCallTree) call callTree_enter("step_MOM_dyn_split_RK2b(), MOM_dynamics_split_RK2b.F90") + + !$OMP parallel do default(shared) + do k=1,nz + do j=G%jsd,G%jed ; do i=G%isdB,G%iedB ; up(i,j,k) = 0.0 ; enddo ; enddo + do j=G%jsdB,G%jedB ; do i=G%isd,G%ied ; vp(i,j,k) = 0.0 ; enddo ; enddo + do j=G%jsd,G%jed ; do i=G%isd,G%ied ; hp(i,j,k) = h(i,j,k) ; enddo ; enddo + enddo + + ! Update CFL truncation value as function of time + call updateCFLtruncationValue(Time_local, CS%vertvisc_CSp, US) + + if (CS%debug) then + call MOM_state_chksum("Start predictor ", u_inst, v_inst, h, uh, vh, G, GV, US, symmetric=sym) + call check_redundant("Start predictor u ", u_inst, v_inst, G, unscale=US%L_T_to_m_s) + call check_redundant("Start predictor uh ", uh, vh, G, unscale=GV%H_to_MKS*US%L_to_m**2*US%s_to_T) + endif + + dyn_p_surf = associated(p_surf_begin) .and. associated(p_surf_end) + if (dyn_p_surf) then + p_surf => p_surf_end + call safe_alloc_ptr(eta_PF_start,G%isd,G%ied,G%jsd,G%jed) + eta_PF_start(:,:) = 0.0 + else + p_surf => forces%p_surf + endif + + if (associated(CS%OBC)) then + if (CS%debug_OBC) call open_boundary_test_extern_h(G, GV, CS%OBC, h) + + ! Update OBC ramp value as function of time + call update_OBC_ramp(Time_local, CS%OBC, US) + + do k=1,nz ; do j=G%jsd,G%jed ; do I=G%IsdB,G%IedB + u_old_rad_OBC(I,j,k) = u_av(I,j,k) + enddo ; enddo ; enddo + do k=1,nz ; do J=G%JsdB,G%JedB ; do i=G%isd,G%ied + v_old_rad_OBC(i,J,k) = v_av(i,J,k) + enddo ; enddo ; enddo + endif + + BT_cont_BT_thick = .false. + if (associated(CS%BT_cont)) BT_cont_BT_thick = & + (allocated(CS%BT_cont%h_u) .and. allocated(CS%BT_cont%h_v)) + + if (CS%split_bottom_stress) then + taux_bot => CS%taux_bot ; tauy_bot => CS%tauy_bot + endif + + !--- begin set up for group halo pass + + cont_stencil = continuity_stencil(CS%continuity_CSp) + obc_stencil = 2 + if (associated(CS%OBC)) then + if (CS%OBC%oblique_BCs_exist_globally) obc_stencil = 3 + endif + call cpu_clock_begin(id_clock_pass) + call create_group_pass(CS%pass_eta, eta, G%Domain, halo=1) + call create_group_pass(CS%pass_visc_rem, CS%visc_rem_u, CS%visc_rem_v, G%Domain, & + To_All+SCALAR_PAIR, CGRID_NE, halo=max(1,cont_stencil)) + call create_group_pass(CS%pass_uvp, up, vp, G%Domain, halo=max(1,cont_stencil)) + call create_group_pass(CS%pass_hp_uv, hp, G%Domain, halo=2) + call create_group_pass(CS%pass_hp_uv, u_av, v_av, G%Domain, halo=max(2,obc_stencil)) + call create_group_pass(CS%pass_hp_uv, uh(:,:,:), vh(:,:,:), G%Domain, halo=max(2,obc_stencil)) + + call create_group_pass(CS%pass_uv, u_inst, v_inst, G%Domain, halo=max(2,cont_stencil)) + call create_group_pass(CS%pass_h, h, G%Domain, halo=max(2,cont_stencil)) + call create_group_pass(CS%pass_av_uvh, u_av, v_av, G%Domain, halo=max(2,obc_stencil)) + call create_group_pass(CS%pass_av_uvh, uh(:,:,:), vh(:,:,:), G%Domain, halo=max(2,obc_stencil)) + call cpu_clock_end(id_clock_pass) + !--- end set up for group halo pass + + +! PFu = d/dx M(h,T,S) +! pbce = dM/deta + if (CS%begw == 0.0) call enable_averages(dt, Time_local, CS%diag) + call cpu_clock_begin(id_clock_pres) + call PressureForce(h, tv, CS%PFu, CS%PFv, G, GV, US, CS%PressureForce_CSp, & + CS%ALE_CSp, p_surf, CS%pbce, CS%eta_PF) + if (dyn_p_surf) then + pres_to_eta = 1.0 / (GV%g_Earth * GV%H_to_RZ) + !$OMP parallel do default(shared) + do j=Jsq,Jeq+1 ; do i=Isq,Ieq+1 + eta_PF_start(i,j) = CS%eta_PF(i,j) - pres_to_eta * (p_surf_begin(i,j) - p_surf_end(i,j)) + enddo ; enddo + endif + ! Stokes shear force contribution to pressure gradient + Use_Stokes_PGF = present(Waves) + if (Use_Stokes_PGF) then + Use_Stokes_PGF = associated(Waves) + if (Use_Stokes_PGF) Use_Stokes_PGF = Waves%Stokes_PGF + if (Use_Stokes_PGF) then + call thickness_to_dz(h, tv, dz, G, GV, US, halo_size=1) + call Stokes_PGF(G, GV, US, dz, u_inst, v_inst, CS%PFu_Stokes, CS%PFv_Stokes, Waves) + + ! We are adding Stokes_PGF to hydrostatic PGF here. The diag PFu/PFv + ! will therefore report the sum total PGF and we avoid other + ! modifications in the code. The PFu_Stokes is output within the waves routines. + if (.not.Waves%Passive_Stokes_PGF) then + do k=1,nz + do j=js,je ; do I=Isq,Ieq + CS%PFu(I,j,k) = CS%PFu(I,j,k) + CS%PFu_Stokes(I,j,k) + enddo ; enddo + enddo + do k=1,nz + do J=Jsq,Jeq ; do i=is,ie + CS%PFv(i,J,k) = CS%PFv(i,J,k) + CS%PFv_Stokes(i,J,k) + enddo ; enddo + enddo + endif + endif + endif + call cpu_clock_end(id_clock_pres) + call disable_averaging(CS%diag) + if (showCallTree) call callTree_wayPoint("done with PressureForce (step_MOM_dyn_split_RK2b)") + + if (associated(CS%OBC)) then ; if (CS%OBC%update_OBC) then + call update_OBC_data(CS%OBC, G, GV, US, tv, h, CS%update_OBC_CSp, Time_local) + endif ; endif + if (associated(CS%OBC) .and. CS%debug_OBC) & + call open_boundary_zero_normal_flow(CS%OBC, G, GV, CS%PFu, CS%PFv) + + if (G%nonblocking_updates) & + call start_group_pass(CS%pass_eta, G%Domain, clock=id_clock_pass) + +! CAu = -(f+zeta_av)/h_av vh + d/dx KE_av + if (.not.CS%CAu_pred_stored) then + ! Calculate a predictor-step estimate of the Coriolis and momentum advection terms, + ! if it was not already stored from the end of the previous time step. + call cpu_clock_begin(id_clock_Cor) + call CorAdCalc(u_av, v_av, h_av, uh, vh, CS%CAu_pred, CS%CAv_pred, CS%OBC, CS%AD_pred, & + G, GV, US, CS%CoriolisAdv, pbv, Waves=Waves) + call cpu_clock_end(id_clock_Cor) + if (showCallTree) call callTree_wayPoint("done with CorAdCalc (step_MOM_dyn_split_RK2b)") + endif + +! u_bc_accel = CAu + PFu + diffu(u[n-1]) + call cpu_clock_begin(id_clock_btforce) + !$OMP parallel do default(shared) + do k=1,nz + do j=js,je ; do I=Isq,Ieq + u_bc_accel(I,j,k) = (CS%CAu_pred(I,j,k) + CS%PFu(I,j,k)) + CS%diffu(I,j,k) + enddo ; enddo + do J=Jsq,Jeq ; do i=is,ie + v_bc_accel(i,J,k) = (CS%CAv_pred(i,J,k) + CS%PFv(i,J,k)) + CS%diffv(i,J,k) + enddo ; enddo + enddo + if (associated(CS%OBC)) then + call open_boundary_zero_normal_flow(CS%OBC, G, GV, u_bc_accel, v_bc_accel) + endif + call cpu_clock_end(id_clock_btforce) + + if (CS%debug) then + call MOM_accel_chksum("pre-btstep accel", CS%CAu_pred, CS%CAv_pred, CS%PFu, CS%PFv, & + CS%diffu, CS%diffv, G, GV, US, CS%pbce, u_bc_accel, v_bc_accel, & + symmetric=sym) + call check_redundant("pre-btstep CS%CA ", CS%CAu_pred, CS%CAv_pred, G, unscale=US%L_T2_to_m_s2) + call check_redundant("pre-btstep CS%PF ", CS%PFu, CS%PFv, G, unscale=US%L_T2_to_m_s2) + call check_redundant("pre-btstep CS%diff ", CS%diffu, CS%diffv, G, unscale=US%L_T2_to_m_s2) + call check_redundant("pre-btstep u_bc_accel ", u_bc_accel, v_bc_accel, G, unscale=US%L_T2_to_m_s2) + endif + + call cpu_clock_begin(id_clock_vertvisc) + !$OMP parallel do default(shared) + do k=1,nz + do j=js,je ; do I=Isq,Ieq + up(I,j,k) = G%mask2dCu(I,j) * (u_inst(I,j,k) + dt * u_bc_accel(I,j,k)) + enddo ; enddo + do J=Jsq,Jeq ; do i=is,ie + vp(i,J,k) = G%mask2dCv(i,J) * (v_inst(i,J,k) + dt * v_bc_accel(i,J,k)) + enddo ; enddo + enddo + + call enable_averages(dt, Time_local, CS%diag) + call set_viscous_ML(u_inst, v_inst, h, tv, forces, visc, dt, G, GV, US, CS%set_visc_CSp) + call disable_averaging(CS%diag) + + if (CS%debug) then + call uvchksum("before vertvisc: up", up, vp, G%HI, haloshift=0, symmetric=sym, scale=US%L_T_to_m_s) + endif + call thickness_to_dz(h, tv, dz, G, GV, US, halo_size=1) + call vertvisc_coef(up, vp, h, dz, forces, visc, tv, dt, G, GV, US, CS%vertvisc_CSp, CS%OBC, VarMix) + call vertvisc_remnant(visc, CS%visc_rem_u, CS%visc_rem_v, dt, G, GV, US, CS%vertvisc_CSp) + call cpu_clock_end(id_clock_vertvisc) + if (showCallTree) call callTree_wayPoint("done with vertvisc_coef (step_MOM_dyn_split_RK2b)") + + + call cpu_clock_begin(id_clock_pass) + if (G%nonblocking_updates) then + call complete_group_pass(CS%pass_eta, G%Domain) + call start_group_pass(CS%pass_visc_rem, G%Domain) + else + call do_group_pass(CS%pass_eta, G%Domain) + call do_group_pass(CS%pass_visc_rem, G%Domain) + endif + call cpu_clock_end(id_clock_pass) + + call cpu_clock_begin(id_clock_btcalc) + ! Calculate the relative layer weights for determining barotropic quantities. + if (.not.BT_cont_BT_thick) & + call btcalc(h, G, GV, CS%barotropic_CSp, OBC=CS%OBC) + call bt_mass_source(h, eta, .true., G, GV, CS%barotropic_CSp) + + SpV_avg(:,:) = 0.0 + if ((.not.GV%Boussinesq) .and. associated(CS%OBC)) then + ! Determine the column average specific volume if it is needed due to the + ! use of Flather open boundary conditions in non-Boussinesq mode. + if (open_boundary_query(CS%OBC, apply_Flather_OBC=.true.)) & + call find_col_avg_SpV(h, SpV_avg, tv, G, GV, US) + endif + call cpu_clock_end(id_clock_btcalc) + + if (G%nonblocking_updates) & + call complete_group_pass(CS%pass_visc_rem, G%Domain, clock=id_clock_pass) + +! u_accel_bt = layer accelerations due to barotropic solver + call cpu_clock_begin(id_clock_continuity) + call continuity(u_inst, v_inst, h, hp, uh_in, vh_in, dt, G, GV, US, CS%continuity_CSp, CS%OBC, pbv, & + visc_rem_u=CS%visc_rem_u, visc_rem_v=CS%visc_rem_v, BT_cont=CS%BT_cont) + call cpu_clock_end(id_clock_continuity) + if (BT_cont_BT_thick) then + call btcalc(h, G, GV, CS%barotropic_CSp, CS%BT_cont%h_u, CS%BT_cont%h_v, & + OBC=CS%OBC) + endif + if (showCallTree) call callTree_wayPoint("done with continuity[BT_cont] (step_MOM_dyn_split_RK2b)") + + uh_ptr => uh_in ; vh_ptr => vh_in ; u_ptr => u_inst ; v_ptr => v_inst + + call cpu_clock_begin(id_clock_btstep) + if (calc_dtbt) call set_dtbt(G, GV, US, CS%barotropic_CSp, eta, CS%pbce) + if (showCallTree) call callTree_enter("btstep(), MOM_barotropic.F90") + ! This is the predictor step call to btstep. + ! The CS%ADp argument here stores the weights for certain integrated diagnostics. + call btstep(u_inst, v_inst, eta, dt, u_bc_accel, v_bc_accel, forces, CS%pbce, CS%eta_PF, u_av, v_av, & + CS%u_accel_bt, CS%v_accel_bt, eta_pred, CS%uhbt, CS%vhbt, G, GV, US, & + CS%barotropic_CSp, CS%visc_rem_u, CS%visc_rem_v, SpV_avg, CS%ADp, CS%OBC, CS%BT_cont, & + eta_PF_start, taux_bot, tauy_bot, uh_ptr, vh_ptr, u_ptr, v_ptr) + if (showCallTree) call callTree_leave("btstep()") + call cpu_clock_end(id_clock_btstep) + +! up = u + dt_pred*( u_bc_accel + u_accel_bt ) + dt_pred = dt * CS%be + call cpu_clock_begin(id_clock_mom_update) + + !$OMP parallel do default(shared) + do k=1,nz + do J=Jsq,Jeq ; do i=is,ie + vp(i,J,k) = G%mask2dCv(i,J) * (v_inst(i,J,k) + dt_pred * & + (v_bc_accel(i,J,k) + CS%v_accel_bt(i,J,k))) + enddo ; enddo + do j=js,je ; do I=Isq,Ieq + up(I,j,k) = G%mask2dCu(I,j) * (u_inst(I,j,k) + dt_pred * & + (u_bc_accel(I,j,k) + CS%u_accel_bt(I,j,k))) + enddo ; enddo + enddo + call cpu_clock_end(id_clock_mom_update) + + if (CS%debug) then + call uvchksum("Predictor 1 [uv]", up, vp, G%HI, haloshift=0, symmetric=sym, scale=US%L_T_to_m_s) + call hchksum(h, "Predictor 1 h", G%HI, haloshift=1, scale=GV%H_to_MKS) + call uvchksum("Predictor 1 [uv]h", uh, vh, G%HI,haloshift=2, & + symmetric=sym, scale=GV%H_to_MKS*US%L_to_m**2*US%s_to_T) +! call MOM_state_chksum("Predictor 1", up, vp, h, uh, vh, G, GV, US, haloshift=1) + call MOM_accel_chksum("Predictor accel", CS%CAu_pred, CS%CAv_pred, CS%PFu, CS%PFv, & + CS%diffu, CS%diffv, G, GV, US, CS%pbce, CS%u_accel_bt, CS%v_accel_bt, symmetric=sym) + call MOM_state_chksum("Predictor 1 init", u_inst, v_inst, h, uh, vh, G, GV, US, haloshift=1, & + symmetric=sym) + call check_redundant("Predictor 1 up", up, vp, G, unscale=US%L_T_to_m_s) + call check_redundant("Predictor 1 uh", uh, vh, G, unscale=GV%H_to_MKS*US%L_to_m**2*US%s_to_T) + endif + +! up <- up + dt_pred d/dz visc d/dz up +! u_av <- u_av + dt_pred d/dz visc d/dz u_av + call cpu_clock_begin(id_clock_vertvisc) + if (CS%debug) then + call uvchksum("0 before vertvisc: [uv]p", up, vp, G%HI,haloshift=0, symmetric=sym, scale=US%L_T_to_m_s) + endif + + if (CS%fpmix) then + uold(:,:,:) = 0.0 + vold(:,:,:) = 0.0 + do k=1,nz ; do j=js,je ; do I=Isq,Ieq + uold(I,j,k) = up(I,j,k) + enddo ; enddo ; enddo + do k=1,nz ; do J=Jsq,Jeq ; do i=is,ie + vold(i,J,k) = vp(i,J,k) + enddo ; enddo ; enddo + endif + + call thickness_to_dz(h, tv, dz, G, GV, US, halo_size=1) + call vertvisc_coef(up, vp, h, dz, forces, visc, tv, dt_pred, G, GV, US, CS%vertvisc_CSp, & + CS%OBC, VarMix) + call vertvisc(up, vp, h, forces, visc, dt_pred, CS%OBC, CS%AD_pred, CS%CDp, G, & + GV, US, CS%vertvisc_CSp, CS%taux_bot, CS%tauy_bot, waves=waves) + + if (CS%fpmix) then + hbl(:,:) = 0.0 + if (ASSOCIATED(CS%KPP_CSp)) call KPP_get_BLD(CS%KPP_CSp, hbl, G, US, m_to_BLD_units=GV%m_to_H) + if (ASSOCIATED(CS%energetic_PBL_CSp)) & + call energetic_PBL_get_MLD(CS%energetic_PBL_CSp, hbl, G, US, m_to_MLD_units=GV%m_to_H) + call vertFPmix(up, vp, uold, vold, hbl, h, forces, & + dt_pred, G, GV, US, CS%vertvisc_CSp, CS%OBC) + call vertvisc(up, vp, h, forces, visc, dt_pred, CS%OBC, CS%ADp, CS%CDp, G, & + GV, US, CS%vertvisc_CSp, CS%taux_bot, CS%tauy_bot, waves=waves) + endif + + if (showCallTree) call callTree_wayPoint("done with vertvisc (step_MOM_dyn_split_RK2b)") + if (G%nonblocking_updates) then + call cpu_clock_end(id_clock_vertvisc) + call start_group_pass(CS%pass_uvp, G%Domain, clock=id_clock_pass) + call cpu_clock_begin(id_clock_vertvisc) + endif + call vertvisc_remnant(visc, CS%visc_rem_u, CS%visc_rem_v, dt_pred, G, GV, US, CS%vertvisc_CSp) + call cpu_clock_end(id_clock_vertvisc) + + call do_group_pass(CS%pass_visc_rem, G%Domain, clock=id_clock_pass) + if (G%nonblocking_updates) then + call complete_group_pass(CS%pass_uvp, G%Domain, clock=id_clock_pass) + else + call do_group_pass(CS%pass_uvp, G%Domain, clock=id_clock_pass) + endif + + ! uh = u_av * h + ! hp = h + dt * div . uh + call cpu_clock_begin(id_clock_continuity) + call continuity(up, vp, h, hp, uh, vh, dt, G, GV, US, CS%continuity_CSp, CS%OBC, pbv, & + CS%uhbt, CS%vhbt, CS%visc_rem_u, CS%visc_rem_v, & + u_av, v_av, BT_cont=CS%BT_cont) + call cpu_clock_end(id_clock_continuity) + if (showCallTree) call callTree_wayPoint("done with continuity (step_MOM_dyn_split_RK2b)") + + call do_group_pass(CS%pass_hp_uv, G%Domain, clock=id_clock_pass) + + if (associated(CS%OBC)) then + + if (CS%debug) & + call uvchksum("Pre OBC avg [uv]", u_av, v_av, G%HI, haloshift=1, symmetric=sym, scale=US%L_T_to_m_s) + + call radiation_open_bdry_conds(CS%OBC, u_av, u_old_rad_OBC, v_av, v_old_rad_OBC, G, GV, US, dt_pred) + + if (CS%debug) & + call uvchksum("Post OBC avg [uv]", u_av, v_av, G%HI, haloshift=1, symmetric=sym, scale=US%L_T_to_m_s) + + ! These should be done with a pass that excludes uh & vh. +! call do_group_pass(CS%pass_hp_uv, G%Domain, clock=id_clock_pass) + endif + + if (G%nonblocking_updates) then + call start_group_pass(CS%pass_av_uvh, G%Domain, clock=id_clock_pass) + endif + + ! h_av = (h + hp)/2 + !$OMP parallel do default(shared) + do k=1,nz ; do j=js-2,je+2 ; do i=is-2,ie+2 + h_av(i,j,k) = 0.5*(h(i,j,k) + hp(i,j,k)) + enddo ; enddo ; enddo + + ! The correction phase of the time step starts here. + call enable_averages(dt, Time_local, CS%diag) + + ! Calculate a revised estimate of the free-surface height correction to be + ! used in the next call to btstep. This call is at this point so that + ! hp can be changed if CS%begw /= 0. + ! eta_cor = ... (hidden inside CS%barotropic_CSp) + call cpu_clock_begin(id_clock_btcalc) + call bt_mass_source(hp, eta_pred, .false., G, GV, CS%barotropic_CSp) + call cpu_clock_end(id_clock_btcalc) + + if (CS%begw /= 0.0) then + ! hp <- (1-begw)*h_in + begw*hp + ! Back up hp to the value it would have had after a time-step of + ! begw*dt. hp is not used again until recalculated by continuity. + !$OMP parallel do default(shared) + do k=1,nz ; do j=js-1,je+1 ; do i=is-1,ie+1 + hp(i,j,k) = (1.0-CS%begw)*h(i,j,k) + CS%begw*hp(i,j,k) + enddo ; enddo ; enddo + + ! PFu = d/dx M(hp,T,S) + ! pbce = dM/deta + call cpu_clock_begin(id_clock_pres) + call PressureForce(hp, tv, CS%PFu, CS%PFv, G, GV, US, CS%PressureForce_CSp, & + CS%ALE_CSp, p_surf, CS%pbce, CS%eta_PF) + ! Stokes shear force contribution to pressure gradient + Use_Stokes_PGF = present(Waves) + if (Use_Stokes_PGF) then + Use_Stokes_PGF = associated(Waves) + if (Use_Stokes_PGF) Use_Stokes_PGF = Waves%Stokes_PGF + if (Use_Stokes_PGF) then + call thickness_to_dz(h, tv, dz, G, GV, US, halo_size=1) + call Stokes_PGF(G, GV, US, dz, u_inst, v_inst, CS%PFu_Stokes, CS%PFv_Stokes, Waves) + if (.not.Waves%Passive_Stokes_PGF) then + do k=1,nz + do j=js,je ; do I=Isq,Ieq + CS%PFu(I,j,k) = CS%PFu(I,j,k) + CS%PFu_Stokes(I,j,k) + enddo ; enddo + enddo + do k=1,nz + do J=Jsq,Jeq ; do i=is,ie + CS%PFv(i,J,k) = CS%PFv(i,J,k) + CS%PFv_Stokes(i,J,k) + enddo ; enddo + enddo + endif + endif + endif + call cpu_clock_end(id_clock_pres) + if (showCallTree) call callTree_wayPoint("done with PressureForce[hp=(1-b).h+b.h] (step_MOM_dyn_split_RK2b)") + endif + + if (G%nonblocking_updates) & + call complete_group_pass(CS%pass_av_uvh, G%Domain, clock=id_clock_pass) + + if (BT_cont_BT_thick) then + call btcalc(h, G, GV, CS%barotropic_CSp, CS%BT_cont%h_u, CS%BT_cont%h_v, & + OBC=CS%OBC) + if (showCallTree) call callTree_wayPoint("done with btcalc[BT_cont_BT_thick] (step_MOM_dyn_split_RK2b)") + endif + + if (CS%debug) then + call MOM_state_chksum("Predictor ", up, vp, hp, uh, vh, G, GV, US, symmetric=sym) + call uvchksum("Predictor avg [uv]", u_av, v_av, G%HI, haloshift=1, symmetric=sym, scale=US%L_T_to_m_s) + call hchksum(h_av, "Predictor avg h", G%HI, haloshift=0, scale=GV%H_to_MKS) + ! call MOM_state_chksum("Predictor avg ", u_av, v_av, h_av, uh, vh, G, GV, US) + call check_redundant("Predictor up ", up, vp, G, unscale=US%L_T_to_m_s) + call check_redundant("Predictor uh ", uh, vh, G, unscale=GV%H_to_MKS*US%L_to_m**2*US%s_to_T) + endif + +! diffu = horizontal viscosity terms (u_av) + call cpu_clock_begin(id_clock_horvisc) + call horizontal_viscosity(u_av, v_av, h_av, CS%diffu, CS%diffv, & + MEKE, Varmix, G, GV, US, CS%hor_visc, & + OBC=CS%OBC, BT=CS%barotropic_CSp, TD=thickness_diffuse_CSp, & + ADp=CS%ADp) + call cpu_clock_end(id_clock_horvisc) + if (showCallTree) call callTree_wayPoint("done with horizontal_viscosity (step_MOM_dyn_split_RK2b)") + +! CAu = -(f+zeta_av)/h_av vh + d/dx KE_av + call cpu_clock_begin(id_clock_Cor) + call CorAdCalc(u_av, v_av, h_av, uh, vh, CS%CAu, CS%CAv, CS%OBC, CS%ADp, & + G, GV, US, CS%CoriolisAdv, pbv, Waves=Waves) + call cpu_clock_end(id_clock_Cor) + if (showCallTree) call callTree_wayPoint("done with CorAdCalc (step_MOM_dyn_split_RK2b)") + +! Calculate the momentum forcing terms for the barotropic equations. + +! u_bc_accel = CAu + PFu + diffu(u[n-1]) + call cpu_clock_begin(id_clock_btforce) + !$OMP parallel do default(shared) + do k=1,nz + do j=js,je ; do I=Isq,Ieq + u_bc_accel(I,j,k) = (CS%Cau(I,j,k) + CS%PFu(I,j,k)) + CS%diffu(I,j,k) + enddo ; enddo + do J=Jsq,Jeq ; do i=is,ie + v_bc_accel(i,J,k) = (CS%Cav(i,J,k) + CS%PFv(i,J,k)) + CS%diffv(i,J,k) + enddo ; enddo + enddo + if (associated(CS%OBC)) then + call open_boundary_zero_normal_flow(CS%OBC, G, GV, u_bc_accel, v_bc_accel) + endif + call cpu_clock_end(id_clock_btforce) + + if (CS%debug) then + call MOM_accel_chksum("corr pre-btstep accel", CS%CAu, CS%CAv, CS%PFu, CS%PFv, & + CS%diffu, CS%diffv, G, GV, US, CS%pbce, u_bc_accel, v_bc_accel, & + symmetric=sym) + call check_redundant("corr pre-btstep CS%CA ", CS%CAu, CS%CAv, G, unscale=US%L_T2_to_m_s2) + call check_redundant("corr pre-btstep CS%PF ", CS%PFu, CS%PFv, G, unscale=US%L_T2_to_m_s2) + call check_redundant("corr pre-btstep CS%diff ", CS%diffu, CS%diffv, G, unscale=US%L_T2_to_m_s2) + call check_redundant("corr pre-btstep u_bc_accel ", u_bc_accel, v_bc_accel, G, unscale=US%L_T2_to_m_s2) + endif + + ! u_accel_bt = layer accelerations due to barotropic solver + ! pbce = dM/deta + call cpu_clock_begin(id_clock_btstep) + + uh_ptr => uh ; vh_ptr => vh ; u_ptr => u_av ; v_ptr => v_av + + if (showCallTree) call callTree_enter("btstep(), MOM_barotropic.F90") + ! This is the corrector step call to btstep. + call btstep(u_inst, v_inst, eta, dt, u_bc_accel, v_bc_accel, forces, CS%pbce, CS%eta_PF, u_av, v_av, & + CS%u_accel_bt, CS%v_accel_bt, eta_pred, CS%uhbt, CS%vhbt, G, GV, US, & + CS%barotropic_CSp, CS%visc_rem_u, CS%visc_rem_v, SpV_avg, CS%ADp, CS%OBC, CS%BT_cont, & + eta_PF_start, taux_bot, tauy_bot, uh_ptr, vh_ptr, u_ptr, v_ptr, etaav=eta_av) + if (CS%id_deta_dt>0) then + do j=js,je ; do i=is,ie ; deta_dt(i,j) = (eta_pred(i,j) - eta(i,j))*Idt_bc ; enddo ; enddo + endif + do j=js,je ; do i=is,ie ; eta(i,j) = eta_pred(i,j) ; enddo ; enddo + + call cpu_clock_end(id_clock_btstep) + if (showCallTree) call callTree_leave("btstep()") + + if (CS%debug) then + call check_redundant("u_accel_bt ", CS%u_accel_bt, CS%v_accel_bt, G, unscale=US%L_T2_to_m_s2) + endif + + ! u = u + dt*( u_bc_accel + u_accel_bt ) + call cpu_clock_begin(id_clock_mom_update) + !$OMP parallel do default(shared) + do k=1,nz + do j=js,je ; do I=Isq,Ieq + u_inst(I,j,k) = G%mask2dCu(I,j) * (u_inst(I,j,k) + dt * & + (u_bc_accel(I,j,k) + CS%u_accel_bt(I,j,k))) + enddo ; enddo + do J=Jsq,Jeq ; do i=is,ie + v_inst(i,J,k) = G%mask2dCv(i,J) * (v_inst(i,J,k) + dt * & + (v_bc_accel(i,J,k) + CS%v_accel_bt(i,J,k))) + enddo ; enddo + enddo + call cpu_clock_end(id_clock_mom_update) + + if (CS%debug) then + call uvchksum("Corrector 1 [uv]", u_inst, v_inst, G%HI, haloshift=0, symmetric=sym, scale=US%L_T_to_m_s) + call hchksum(h, "Corrector 1 h", G%HI, haloshift=1, scale=GV%H_to_MKS) + call uvchksum("Corrector 1 [uv]h", uh, vh, G%HI, haloshift=2, & + symmetric=sym, scale=GV%H_to_MKS*US%L_to_m**2*US%s_to_T) + ! call MOM_state_chksum("Corrector 1", u_inst, v_inst, h, uh, vh, G, GV, US, haloshift=1) + call MOM_accel_chksum("Corrector accel", CS%CAu, CS%CAv, CS%PFu, CS%PFv, & + CS%diffu, CS%diffv, G, GV, US, CS%pbce, CS%u_accel_bt, CS%v_accel_bt, & + symmetric=sym) + endif + + ! u <- u + dt d/dz visc d/dz u + ! u_av <- u_av + dt d/dz visc d/dz u_av + call cpu_clock_begin(id_clock_vertvisc) + + if (CS%fpmix) then + uold(:,:,:) = 0.0 + vold(:,:,:) = 0.0 + do k=1,nz ; do j=js,je ; do I=Isq,Ieq + uold(I,j,k) = u_inst(I,j,k) + enddo ; enddo ; enddo + do k=1,nz ; do J=Jsq,Jeq ; do i=is,ie + vold(i,J,k) = v_inst(i,J,k) + enddo ; enddo ; enddo + endif + + call thickness_to_dz(h, tv, dz, G, GV, US, halo_size=1) + call vertvisc_coef(u_inst, v_inst, h, dz, forces, visc, tv, dt, G, GV, US, CS%vertvisc_CSp, CS%OBC, VarMix) + call vertvisc(u_inst, v_inst, h, forces, visc, dt, CS%OBC, CS%ADp, CS%CDp, G, GV, US, & + CS%vertvisc_CSp, CS%taux_bot, CS%tauy_bot,waves=waves) + + if (CS%fpmix) then + call vertFPmix(u_inst, v_inst, uold, vold, hbl, h, forces, dt, & + G, GV, US, CS%vertvisc_CSp, CS%OBC) + call vertvisc(u_inst, v_inst, h, forces, visc, dt, CS%OBC, CS%ADp, CS%CDp, G, GV, US, & + CS%vertvisc_CSp, CS%taux_bot, CS%tauy_bot, waves=waves) + endif + + if (G%nonblocking_updates) then + call cpu_clock_end(id_clock_vertvisc) + call start_group_pass(CS%pass_uv, G%Domain, clock=id_clock_pass) + call cpu_clock_begin(id_clock_vertvisc) + endif + call vertvisc_remnant(visc, CS%visc_rem_u, CS%visc_rem_v, dt, G, GV, US, CS%vertvisc_CSp) + call cpu_clock_end(id_clock_vertvisc) + if (showCallTree) call callTree_wayPoint("done with vertvisc (step_MOM_dyn_split_RK2b)") + +! Later, h_av = (h_in + h_out)/2, but for now use h_av to store h_in. + !$OMP parallel do default(shared) + do k=1,nz ; do j=js-2,je+2 ; do i=is-2,ie+2 + h_av(i,j,k) = h(i,j,k) + enddo ; enddo ; enddo + + call do_group_pass(CS%pass_visc_rem, G%Domain, clock=id_clock_pass) + if (G%nonblocking_updates) then + call complete_group_pass(CS%pass_uv, G%Domain, clock=id_clock_pass) + else + call do_group_pass(CS%pass_uv, G%Domain, clock=id_clock_pass) + endif + + ! uh = u_av * h + ! h = h + dt * div . uh + ! u_av and v_av adjusted so their mass transports match uhbt and vhbt. + call cpu_clock_begin(id_clock_continuity) + call continuity(u_inst, v_inst, h, h, uh, vh, dt, G, GV, US, CS%continuity_CSp, CS%OBC, pbv, & + CS%uhbt, CS%vhbt, CS%visc_rem_u, CS%visc_rem_v, u_av, v_av) + call cpu_clock_end(id_clock_continuity) + call do_group_pass(CS%pass_h, G%Domain, clock=id_clock_pass) + ! Whenever thickness changes let the diag manager know, target grids + ! for vertical remapping may need to be regenerated. + call diag_update_remap_grids(CS%diag) + if (showCallTree) call callTree_wayPoint("done with continuity (step_MOM_dyn_split_RK2b)") + + if (G%nonblocking_updates) then + call start_group_pass(CS%pass_av_uvh, G%Domain, clock=id_clock_pass) + else + call do_group_pass(CS%pass_av_uvh, G%domain, clock=id_clock_pass) + endif + + if (associated(CS%OBC)) then + call radiation_open_bdry_conds(CS%OBC, u_inst, u_old_rad_OBC, v_inst, v_old_rad_OBC, G, GV, US, dt) + endif + +! h_av = (h_in + h_out)/2 . Going in to this line, h_av = h_in. + !$OMP parallel do default(shared) + do k=1,nz ; do j=js-2,je+2 ; do i=is-2,ie+2 + h_av(i,j,k) = 0.5*(h_av(i,j,k) + h(i,j,k)) + enddo ; enddo ; enddo + + if (G%nonblocking_updates) & + call complete_group_pass(CS%pass_av_uvh, G%Domain, clock=id_clock_pass) + + !$OMP parallel do default(shared) + do k=1,nz + do j=js-2,je+2 ; do I=Isq-2,Ieq+2 + uhtr(I,j,k) = uhtr(I,j,k) + uh(I,j,k)*dt + enddo ; enddo + do J=Jsq-2,Jeq+2 ; do i=is-2,ie+2 + vhtr(i,J,k) = vhtr(i,J,k) + vh(i,J,k)*dt + enddo ; enddo + enddo + + if (CS%store_CAu) then + ! Calculate a predictor-step estimate of the Coriolis and momentum advection terms + ! for use in the next time step, possibly after it has been vertically remapped. + call cpu_clock_begin(id_clock_Cor) + call disable_averaging(CS%diag) ! These calculations should not be used for diagnostics. + ! CAu = -(f+zeta_av)/h_av vh + d/dx KE_av + call CorAdCalc(u_av, v_av, h_av, uh, vh, CS%CAu_pred, CS%CAv_pred, CS%OBC, CS%AD_pred, & + G, GV, US, CS%CoriolisAdv, pbv, Waves=Waves) + CS%CAu_pred_stored = .true. + call enable_averages(dt, Time_local, CS%diag) ! Reenable the averaging + call cpu_clock_end(id_clock_Cor) + if (showCallTree) call callTree_wayPoint("done with CorAdCalc (step_MOM_dyn_split_RK2b)") + else + CS%CAu_pred_stored = .false. + endif + + if (CS%fpmix) then + if (CS%id_uold > 0) call post_data(CS%id_uold, uold, CS%diag) + if (CS%id_vold > 0) call post_data(CS%id_vold, vold, CS%diag) + endif + + ! The time-averaged free surface height has already been set by the last call to btstep. + + ! Deallocate this memory to avoid a memory leak. ### We should revisit how this array is declared. -RWH + if (dyn_p_surf .and. associated(eta_PF_start)) deallocate(eta_PF_start) + + ! Here various terms used in to update the momentum equations are + ! offered for time averaging. + if (CS%id_PFu > 0) call post_data(CS%id_PFu, CS%PFu, CS%diag) + if (CS%id_PFv > 0) call post_data(CS%id_PFv, CS%PFv, CS%diag) + if (CS%id_CAu > 0) call post_data(CS%id_CAu, CS%CAu, CS%diag) + if (CS%id_CAv > 0) call post_data(CS%id_CAv, CS%CAv, CS%diag) + + ! Here the thickness fluxes are offered for time averaging. + if (CS%id_uh > 0) call post_data(CS%id_uh, uh, CS%diag) + if (CS%id_vh > 0) call post_data(CS%id_vh, vh, CS%diag) + if (CS%id_uav > 0) call post_data(CS%id_uav, u_av, CS%diag) + if (CS%id_vav > 0) call post_data(CS%id_vav, v_av, CS%diag) + if (CS%id_u_BT_accel > 0) call post_data(CS%id_u_BT_accel, CS%u_accel_bt, CS%diag) + if (CS%id_v_BT_accel > 0) call post_data(CS%id_v_BT_accel, CS%v_accel_bt, CS%diag) + + ! Calculate effective areas and post data + if (CS%id_ueffA > 0) then + ueffA(:,:,:) = 0 + do k=1,nz ; do j=js,je ; do I=Isq,Ieq + if (abs(up(I,j,k)) > 0.) ueffA(I,j,k) = uh(I,j,k) / up(I,j,k) + enddo ; enddo ; enddo + call post_data(CS%id_ueffA, ueffA, CS%diag) + endif + + if (CS%id_veffA > 0) then + veffA(:,:,:) = 0 + do k=1,nz ; do J=Jsq,Jeq ; do i=is,ie + if (abs(vp(i,J,k)) > 0.) veffA(i,J,k) = vh(i,J,k) / vp(i,J,k) + enddo ; enddo ; enddo + call post_data(CS%id_veffA, veffA, CS%diag) + endif + + ! Diagnostics of the fractional thicknesses times momentum budget terms + ! 3D diagnostics hf_PFu etc. are commented because there is no clarity on proper remapping grid option. + ! The code is retained for debugging purposes in the future. + !if (CS%id_hf_PFu > 0) call post_product_u(CS%id_hf_PFu, CS%PFu, CS%ADp%diag_hfrac_u, G, nz, CS%diag) + !if (CS%id_hf_PFv > 0) call post_product_v(CS%id_hf_PFv, CS%PFv, CS%ADp%diag_hfrac_v, G, nz, CS%diag) + !if (CS%id_hf_CAu > 0) call post_product_u(CS%id_hf_CAu, CS%CAu, CS%ADp%diag_hfrac_u, G, nz, CS%diag) + !if (CS%id_hf_CAv > 0) call post_product_v(CS%id_hf_CAv, CS%CAv, CS%ADp%diag_hfrac_v, G, nz, CS%diag) + !if (CS%id_hf_u_BT_accel > 0) & + ! call post_product_u(CS%id_hf_u_BT_accel, CS%u_accel_bt, CS%ADp%diag_hfrac_u, G, nz, CS%diag) + !if (CS%id_hf_v_BT_accel > 0) & + ! call post_product_v(CS%id_hf_v_BT_accel, CS%v_accel_bt, CS%ADp%diag_hfrac_v, G, nz, CS%diag) + + ! Diagnostics for the vertical sum of layer thickness x prssure force accelerations + if (CS%id_intz_PFu_2d > 0) call post_product_sum_u(CS%id_intz_PFu_2d, CS%PFu, CS%ADp%diag_hu, G, nz, CS%diag) + if (CS%id_intz_PFv_2d > 0) call post_product_sum_v(CS%id_intz_PFv_2d, CS%PFv, CS%ADp%diag_hv, G, nz, CS%diag) + + ! Diagnostics for thickness-weighted vertically averaged prssure force accelerations + if (CS%id_hf_PFu_2d > 0) call post_product_sum_u(CS%id_hf_PFu_2d, CS%PFu, CS%ADp%diag_hfrac_u, G, nz, CS%diag) + if (CS%id_hf_PFv_2d > 0) call post_product_sum_v(CS%id_hf_PFv_2d, CS%PFv, CS%ADp%diag_hfrac_v, G, nz, CS%diag) + + ! Diagnostics for thickness x prssure force accelerations + if (CS%id_h_PFu > 0) call post_product_u(CS%id_h_PFu, CS%PFu, CS%ADp%diag_hu, G, nz, CS%diag) + if (CS%id_h_PFv > 0) call post_product_v(CS%id_h_PFv, CS%PFv, CS%ADp%diag_hv, G, nz, CS%diag) + + ! Diagnostics of Coriolis acceleratations + if (CS%id_intz_CAu_2d > 0) call post_product_sum_u(CS%id_intz_CAu_2d, CS%CAu, CS%ADp%diag_hu, G, nz, CS%diag) + if (CS%id_intz_CAv_2d > 0) call post_product_sum_v(CS%id_intz_CAv_2d, CS%CAv, CS%ADp%diag_hv, G, nz, CS%diag) + if (CS%id_hf_CAu_2d > 0) call post_product_sum_u(CS%id_hf_CAu_2d, CS%CAu, CS%ADp%diag_hfrac_u, G, nz, CS%diag) + if (CS%id_hf_CAv_2d > 0) call post_product_sum_v(CS%id_hf_CAv_2d, CS%CAv, CS%ADp%diag_hfrac_v, G, nz, CS%diag) + if (CS%id_h_CAu > 0) call post_product_u(CS%id_h_CAu, CS%CAu, CS%ADp%diag_hu, G, nz, CS%diag) + if (CS%id_h_CAv > 0) call post_product_v(CS%id_h_CAv, CS%CAv, CS%ADp%diag_hv, G, nz, CS%diag) + + ! Diagnostics of barotropic solver acceleratations + if (CS%id_intz_u_BT_accel_2d > 0) & + call post_product_sum_u(CS%id_intz_u_BT_accel_2d, CS%u_accel_bt, CS%ADp%diag_hu, G, nz, CS%diag) + if (CS%id_intz_v_BT_accel_2d > 0) & + call post_product_sum_v(CS%id_intz_v_BT_accel_2d, CS%v_accel_bt, CS%ADp%diag_hv, G, nz, CS%diag) + if (CS%id_hf_u_BT_accel_2d > 0) & + call post_product_sum_u(CS%id_hf_u_BT_accel_2d, CS%u_accel_bt, CS%ADp%diag_hfrac_u, G, nz, CS%diag) + if (CS%id_hf_v_BT_accel_2d > 0) & + call post_product_sum_v(CS%id_hf_v_BT_accel_2d, CS%v_accel_bt, CS%ADp%diag_hfrac_v, G, nz, CS%diag) + if (CS%id_h_u_BT_accel > 0) & + call post_product_u(CS%id_h_u_BT_accel, CS%u_accel_bt, CS%ADp%diag_hu, G, nz, CS%diag) + if (CS%id_h_v_BT_accel > 0) & + call post_product_v(CS%id_h_v_BT_accel, CS%v_accel_bt, CS%ADp%diag_hv, G, nz, CS%diag) + + ! Diagnostics for momentum budget terms multiplied by visc_rem_[uv], + if (CS%id_PFu_visc_rem > 0) call post_product_u(CS%id_PFu_visc_rem, CS%PFu, CS%ADp%visc_rem_u, G, nz, CS%diag) + if (CS%id_PFv_visc_rem > 0) call post_product_v(CS%id_PFv_visc_rem, CS%PFv, CS%ADp%visc_rem_v, G, nz, CS%diag) + if (CS%id_CAu_visc_rem > 0) call post_product_u(CS%id_CAu_visc_rem, CS%CAu, CS%ADp%visc_rem_u, G, nz, CS%diag) + if (CS%id_CAv_visc_rem > 0) call post_product_v(CS%id_CAv_visc_rem, CS%CAv, CS%ADp%visc_rem_v, G, nz, CS%diag) + if (CS%id_u_BT_accel_visc_rem > 0) & + call post_product_u(CS%id_u_BT_accel_visc_rem, CS%u_accel_bt, CS%ADp%visc_rem_u, G, nz, CS%diag) + if (CS%id_v_BT_accel_visc_rem > 0) & + call post_product_v(CS%id_v_BT_accel_visc_rem, CS%v_accel_bt, CS%ADp%visc_rem_v, G, nz, CS%diag) + + ! Diagnostics related to changes in eta + if (CS%id_deta_dt > 0) call post_data(CS%id_deta_dt, deta_dt, CS%diag) + + if (CS%debug) then + call MOM_state_chksum("Corrector ", u_inst, v_inst, h, uh, vh, G, GV, US, symmetric=sym) + call uvchksum("Corrector avg [uv]", u_av, v_av, G%HI, haloshift=1, symmetric=sym, scale=US%L_T_to_m_s) + call hchksum(h_av, "Corrector avg h", G%HI, haloshift=1, scale=GV%H_to_MKS) + ! call MOM_state_chksum("Corrector avg ", u_av, v_av, h_av, uh, vh, G, GV, US) + endif + + if (showCallTree) call callTree_leave("step_MOM_dyn_split_RK2b()") + +end subroutine step_MOM_dyn_split_RK2b + +!> This subroutine sets up any auxiliary restart variables that are specific +!! to the split-explicit time stepping scheme. All variables registered here should +!! have the ability to be recreated if they are not present in a restart file. +subroutine register_restarts_dyn_split_RK2b(HI, GV, US, param_file, CS, restart_CS, uh, vh) + type(hor_index_type), intent(in) :: HI !< Horizontal index structure + type(verticalGrid_type), intent(in) :: GV !< ocean vertical grid structure + type(unit_scale_type), intent(in) :: US !< A dimensional unit scaling type + type(param_file_type), intent(in) :: param_file !< parameter file + type(MOM_dyn_split_RK2b_CS), pointer :: CS !< module control structure + type(MOM_restart_CS), intent(inout) :: restart_CS !< MOM restart control structure + real, dimension(SZIB_(HI),SZJ_(HI),SZK_(GV)), & + target, intent(inout) :: uh !< zonal volume or mass transport [H L2 T-1 ~> m3 s-1 or kg s-1] + real, dimension(SZI_(HI),SZJB_(HI),SZK_(GV)), & + target, intent(inout) :: vh !< merid volume or mass transport [H L2 T-1 ~> m3 s-1 or kg s-1] + + character(len=40) :: mdl = "MOM_dynamics_split_RK2b" ! This module's name. + type(vardesc) :: vd(2) + character(len=48) :: thickness_units, flux_units + + integer :: isd, ied, jsd, jed, nz, IsdB, IedB, JsdB, JedB + + isd = HI%isd ; ied = HI%ied ; jsd = HI%jsd ; jed = HI%jed ; nz = GV%ke + IsdB = HI%IsdB ; IedB = HI%IedB ; JsdB = HI%JsdB ; JedB = HI%JedB + + ! This is where a control structure specific to this module would be allocated. + if (associated(CS)) then + call MOM_error(WARNING, "register_restarts_dyn_split_RK2b called with an associated "// & + "control structure.") + return + endif + allocate(CS) + + ALLOC_(CS%diffu(IsdB:IedB,jsd:jed,nz)) ; CS%diffu(:,:,:) = 0.0 + ALLOC_(CS%diffv(isd:ied,JsdB:JedB,nz)) ; CS%diffv(:,:,:) = 0.0 + ALLOC_(CS%CAu(IsdB:IedB,jsd:jed,nz)) ; CS%CAu(:,:,:) = 0.0 + ALLOC_(CS%CAv(isd:ied,JsdB:JedB,nz)) ; CS%CAv(:,:,:) = 0.0 + ALLOC_(CS%CAu_pred(IsdB:IedB,jsd:jed,nz)) ; CS%CAu_pred(:,:,:) = 0.0 + ALLOC_(CS%CAv_pred(isd:ied,JsdB:JedB,nz)) ; CS%CAv_pred(:,:,:) = 0.0 + ALLOC_(CS%PFu(IsdB:IedB,jsd:jed,nz)) ; CS%PFu(:,:,:) = 0.0 + ALLOC_(CS%PFv(isd:ied,JsdB:JedB,nz)) ; CS%PFv(:,:,:) = 0.0 + + ALLOC_(CS%eta(isd:ied,jsd:jed)) ; CS%eta(:,:) = 0.0 + ALLOC_(CS%u_av(IsdB:IedB,jsd:jed,nz)) ; CS%u_av(:,:,:) = 0.0 + ALLOC_(CS%v_av(isd:ied,JsdB:JedB,nz)) ; CS%v_av(:,:,:) = 0.0 + ALLOC_(CS%h_av(isd:ied,jsd:jed,nz)) ; CS%h_av(:,:,:) = GV%Angstrom_H + + thickness_units = get_thickness_units(GV) + flux_units = get_flux_units(GV) + + call get_param(param_file, mdl, "STORE_CORIOLIS_ACCEL", CS%store_CAu, & + "If true, calculate the Coriolis accelerations at the end of each "//& + "timestep for use in the predictor step of the next split RK2 timestep.", & + default=.true., do_not_log=.true.) + + if (GV%Boussinesq) then + call register_restart_field(CS%eta, "sfc", .false., restart_CS, & + longname="Free surface Height", units=thickness_units, conversion=GV%H_to_mks) + else + call register_restart_field(CS%eta, "p_bot", .false., restart_CS, & + longname="Bottom Pressure", units=thickness_units, conversion=GV%H_to_mks) + endif + + ! These are needed, either to calculate CAu and CAv or to calculate the velocity anomalies in + ! the barotropic solver's Coriolis terms. + vd(1) = var_desc("u2", "m s-1", "Auxiliary Zonal velocity", 'u', 'L') + vd(2) = var_desc("v2", "m s-1", "Auxiliary Meridional velocity", 'v', 'L') + call register_restart_pair(CS%u_av, CS%v_av, vd(1), vd(2), .false., restart_CS, & + conversion=US%L_T_to_m_s) + + if (CS%store_CAu) then + vd(1) = var_desc("CAu", "m s-2", "Zonal Coriolis and advactive acceleration", 'u', 'L') + vd(2) = var_desc("CAv", "m s-2", "Meridional Coriolis and advactive acceleration", 'v', 'L') + call register_restart_pair(CS%CAu_pred, CS%CAv_pred, vd(1), vd(2), .false., restart_CS, & + conversion=US%L_T2_to_m_s2) + else + call register_restart_field(CS%h_av, "h2", .false., restart_CS, & + longname="Auxiliary Layer Thickness", units=thickness_units, conversion=GV%H_to_mks) + + vd(1) = var_desc("uh", flux_units, "Zonal thickness flux", 'u', 'L') + vd(2) = var_desc("vh", flux_units, "Meridional thickness flux", 'v', 'L') + call register_restart_pair(uh, vh, vd(1), vd(2), .false., restart_CS, & + conversion=GV%H_to_MKS*US%L_to_m**2*US%s_to_T) + endif + + vd(1) = var_desc("diffu", "m s-2", "Zonal horizontal viscous acceleration", 'u', 'L') + vd(2) = var_desc("diffv", "m s-2", "Meridional horizontal viscous acceleration", 'v', 'L') + call register_restart_pair(CS%diffu, CS%diffv, vd(1), vd(2), .false., restart_CS, & + conversion=US%L_T2_to_m_s2) + + call register_barotropic_restarts(HI, GV, US, param_file, CS%barotropic_CSp, restart_CS) + +end subroutine register_restarts_dyn_split_RK2b + +!> This subroutine does remapping for the auxiliary restart variables that are used +!! with the split RK2 time stepping scheme. +subroutine remap_dyn_split_RK2b_aux_vars(G, GV, CS, h_old_u, h_old_v, h_new_u, h_new_v, ALE_CSp) + type(ocean_grid_type), intent(inout) :: G !< ocean grid structure + type(verticalGrid_type), intent(in) :: GV !< ocean vertical grid structure + type(MOM_dyn_split_RK2b_CS), pointer :: CS !< module control structure + real, dimension(SZIB_(G),SZJ_(G),SZK_(GV)), & + intent(in) :: h_old_u !< Source grid thickness at zonal + !! velocity points [H ~> m or kg m-2] + real, dimension(SZI_(G),SZJB_(G),SZK_(GV)), & + intent(in) :: h_old_v !< Source grid thickness at meridional + !! velocity points [H ~> m or kg m-2] + real, dimension(SZIB_(G),SZJ_(G),SZK_(GV)), & + intent(in) :: h_new_u !< Destination grid thickness at zonal + !! velocity points [H ~> m or kg m-2] + real, dimension(SZI_(G),SZJB_(G),SZK_(GV)), & + intent(in) :: h_new_v !< Destination grid thickness at meridional + !! velocity points [H ~> m or kg m-2] + type(ALE_CS), pointer :: ALE_CSp !< ALE control structure to use when remapping + + if (.not.CS%remap_aux) return + + if (CS%store_CAu) then + call ALE_remap_velocities(ALE_CSp, G, GV, h_old_u, h_old_v, h_new_u, h_new_v, CS%u_av, CS%v_av) + call pass_vector(CS%u_av, CS%v_av, G%Domain, complete=.false.) + call ALE_remap_velocities(ALE_CSp, G, GV, h_old_u, h_old_v, h_new_u, h_new_v, CS%CAu_pred, CS%CAv_pred) + call pass_vector(CS%CAu_pred, CS%CAv_pred, G%Domain, complete=.true.) + endif + + call ALE_remap_velocities(ALE_CSp, G, GV, h_old_u, h_old_v, h_new_u, h_new_v, CS%diffu, CS%diffv) + +end subroutine remap_dyn_split_RK2b_aux_vars + +!> This subroutine initializes all of the variables that are used by this +!! dynamic core, including diagnostics and the cpu clocks. +subroutine initialize_dyn_split_RK2b(u, v, h, uh, vh, eta, Time, G, GV, US, param_file, & + diag, CS, restart_CS, dt, Accel_diag, Cont_diag, MIS, & + VarMix, MEKE, thickness_diffuse_CSp, & + OBC, update_OBC_CSp, ALE_CSp, set_visc, & + visc, dirs, ntrunc, pbv, calc_dtbt, cont_stencil) + type(ocean_grid_type), intent(inout) :: G !< ocean grid structure + type(verticalGrid_type), intent(in) :: GV !< ocean vertical grid structure + type(unit_scale_type), intent(in) :: US !< A dimensional unit scaling type + real, dimension(SZIB_(G),SZJ_(G),SZK_(GV)), & + intent(inout) :: u !< zonal velocity [L T-1 ~> m s-1] + real, dimension(SZI_(G),SZJB_(G),SZK_(GV)), & + intent(inout) :: v !< merid velocity [L T-1 ~> m s-1] + real, dimension(SZI_(G),SZJ_(G),SZK_(GV)), & + intent(inout) :: h !< layer thickness [H ~> m or kg m-2] + real, dimension(SZIB_(G),SZJ_(G),SZK_(GV)), & + target, intent(inout) :: uh !< zonal volume/mass transport [H L2 T-1 ~> m3 s-1 or kg s-1] + real, dimension(SZI_(G),SZJB_(G),SZK_(GV)), & + target, intent(inout) :: vh !< merid volume/mass transport [H L2 T-1 ~> m3 s-1 or kg s-1] + real, dimension(SZI_(G),SZJ_(G)), intent(inout) :: eta !< free surface height or column mass [H ~> m or kg m-2] + type(time_type), target, intent(in) :: Time !< current model time + type(param_file_type), intent(in) :: param_file !< parameter file for parsing + type(diag_ctrl), target, intent(inout) :: diag !< to control diagnostics + type(MOM_dyn_split_RK2b_CS), pointer :: CS !< module control structure + type(MOM_restart_CS), intent(inout) :: restart_CS !< MOM restart control structure + real, intent(in) :: dt !< time step [T ~> s] + type(accel_diag_ptrs), target, intent(inout) :: Accel_diag !< points to momentum equation terms for + !! budget analysis + type(cont_diag_ptrs), target, intent(inout) :: Cont_diag !< points to terms in continuity equation + type(ocean_internal_state), intent(inout) :: MIS !< "MOM6 internal state" used to pass + !! diagnostic pointers + type(VarMix_CS), intent(inout) :: VarMix !< points to spatially variable viscosities + type(MEKE_type), intent(inout) :: MEKE !< MEKE fields + type(thickness_diffuse_CS), intent(inout) :: thickness_diffuse_CSp !< Pointer to the control structure + !! used for the isopycnal height diffusive transport. + type(ocean_OBC_type), pointer :: OBC !< points to OBC related fields + type(update_OBC_CS), pointer :: update_OBC_CSp !< points to OBC update related fields + type(ALE_CS), pointer :: ALE_CSp !< points to ALE control structure + type(set_visc_CS), target, intent(in) :: set_visc !< set_visc control structure + type(vertvisc_type), intent(inout) :: visc !< vertical viscosities, bottom drag, and related + type(directories), intent(in) :: dirs !< contains directory paths + integer, target, intent(inout) :: ntrunc !< A target for the variable that records + !! the number of times the velocity is + !! truncated (this should be 0). + logical, intent(out) :: calc_dtbt !< If true, recalculate the barotropic time step + type(porous_barrier_type), intent(in) :: pbv !< porous barrier fractional cell metrics + integer, intent(out) :: cont_stencil !< The stencil for thickness + !! from the continuity solver. + + ! local variables + real, dimension(SZI_(G),SZJ_(G),SZK_(GV)) :: h_tmp ! A temporary copy of the layer thicknesses [H ~> m or kg m-2] + character(len=40) :: mdl = "MOM_dynamics_split_RK2b" ! This module's name. + ! This include declares and sets the variable "version". +# include "version_variable.h" + character(len=48) :: thickness_units, flux_units, eta_rest_name + type(group_pass_type) :: pass_av_h_uvh + logical :: debug_truncations + logical :: read_uv, read_h2 + + integer :: i, j, k, is, ie, js, je, isd, ied, jsd, jed, nz + integer :: IsdB, IedB, JsdB, JedB + is = G%isc ; ie = G%iec ; js = G%jsc ; je = G%jec ; nz = GV%ke + isd = G%isd ; ied = G%ied ; jsd = G%jsd ; jed = G%jed + IsdB = G%IsdB ; IedB = G%IedB ; JsdB = G%JsdB ; JedB = G%JedB + + if (.not.associated(CS)) call MOM_error(FATAL, & + "initialize_dyn_split_RK2b called with an unassociated control structure.") + if (CS%module_is_initialized) then + call MOM_error(WARNING, "initialize_dyn_split_RK2b called with a control "// & + "structure that has already been initialized.") + return + endif + CS%module_is_initialized = .true. + + CS%diag => diag + + call log_version(param_file, mdl, version, "") + call get_param(param_file, mdl, "TIDES", CS%use_tides, & + "If true, apply tidal momentum forcing.", default=.false.) + call get_param(param_file, mdl, "CALCULATE_SAL", CS%calculate_SAL, & + "If true, calculate self-attraction and loading.", default=CS%use_tides) + call get_param(param_file, mdl, "BE", CS%be, & + "If SPLIT is true, BE determines the relative weighting "//& + "of a 2nd-order Runga-Kutta baroclinic time stepping "//& + "scheme (0.5) and a backward Euler scheme (1) that is "//& + "used for the Coriolis and inertial terms. BE may be "//& + "from 0.5 to 1, but instability may occur near 0.5. "//& + "BE is also applicable if SPLIT is false and USE_RK2 "//& + "is true.", units="nondim", default=0.6) + call get_param(param_file, mdl, "BEGW", CS%begw, & + "If SPLIT is true, BEGW is a number from 0 to 1 that "//& + "controls the extent to which the treatment of gravity "//& + "waves is forward-backward (0) or simulated backward "//& + "Euler (1). 0 is almost always used. "//& + "If SPLIT is false and USE_RK2 is true, BEGW can be "//& + "between 0 and 0.5 to damp gravity waves.", & + units="nondim", default=0.0) + + call get_param(param_file, mdl, "SPLIT_BOTTOM_STRESS", CS%split_bottom_stress, & + "If true, provide the bottom stress calculated by the "//& + "vertical viscosity to the barotropic solver.", default=.false.) + call get_param(param_file, mdl, "STORE_CORIOLIS_ACCEL", CS%store_CAu, & + "If true, calculate the Coriolis accelerations at the end of each "//& + "timestep for use in the predictor step of the next split RK2 timestep.", & + default=.true.) + call get_param(param_file, mdl, "FPMIX", CS%fpmix, & + "If true, apply profiles of momentum flux magnitude and direction.", & + default=.false.) + call get_param(param_file, mdl, "REMAP_AUXILIARY_VARS", CS%remap_aux, & + "If true, apply ALE remapping to all of the auxiliary 3-dimensional "//& + "variables that are needed to reproduce across restarts, similarly to "//& + "what is already being done with the primary state variables. "//& + "The default should be changed to true.", default=.false., do_not_log=.true.) + if (CS%remap_aux .and. .not.CS%store_CAu) call MOM_error(FATAL, & + "REMAP_AUXILIARY_VARS requires that STORE_CORIOLIS_ACCEL = True.") + call get_param(param_file, mdl, "DEBUG", CS%debug, & + "If true, write out verbose debugging data.", & + default=.false., debuggingParam=.true.) + call get_param(param_file, mdl, "DEBUG_OBC", CS%debug_OBC, default=.false.) + call get_param(param_file, mdl, "DEBUG_TRUNCATIONS", debug_truncations, & + default=.false.) + + allocate(CS%taux_bot(IsdB:IedB,jsd:jed), source=0.0) + allocate(CS%tauy_bot(isd:ied,JsdB:JedB), source=0.0) + + ALLOC_(CS%uhbt(IsdB:IedB,jsd:jed)) ; CS%uhbt(:,:) = 0.0 + ALLOC_(CS%vhbt(isd:ied,JsdB:JedB)) ; CS%vhbt(:,:) = 0.0 + ALLOC_(CS%visc_rem_u(IsdB:IedB,jsd:jed,nz)) ; CS%visc_rem_u(:,:,:) = 0.0 + ALLOC_(CS%visc_rem_v(isd:ied,JsdB:JedB,nz)) ; CS%visc_rem_v(:,:,:) = 0.0 + ALLOC_(CS%eta_PF(isd:ied,jsd:jed)) ; CS%eta_PF(:,:) = 0.0 + ALLOC_(CS%pbce(isd:ied,jsd:jed,nz)) ; CS%pbce(:,:,:) = 0.0 + + ALLOC_(CS%u_accel_bt(IsdB:IedB,jsd:jed,nz)) ; CS%u_accel_bt(:,:,:) = 0.0 + ALLOC_(CS%v_accel_bt(isd:ied,JsdB:JedB,nz)) ; CS%v_accel_bt(:,:,:) = 0.0 + ALLOC_(CS%PFu_Stokes(IsdB:IedB,jsd:jed,nz)) ; CS%PFu_Stokes(:,:,:) = 0.0 + ALLOC_(CS%PFv_Stokes(isd:ied,JsdB:JedB,nz)) ; CS%PFv_Stokes(:,:,:) = 0.0 + + MIS%diffu => CS%diffu + MIS%diffv => CS%diffv + MIS%PFu => CS%PFu + MIS%PFv => CS%PFv + MIS%CAu => CS%CAu + MIS%CAv => CS%CAv + MIS%pbce => CS%pbce + MIS%u_accel_bt => CS%u_accel_bt + MIS%v_accel_bt => CS%v_accel_bt + MIS%u_av => CS%u_av + MIS%v_av => CS%v_av + + CS%ADp => Accel_diag + CS%CDp => Cont_diag + Accel_diag%diffu => CS%diffu + Accel_diag%diffv => CS%diffv + Accel_diag%PFu => CS%PFu + Accel_diag%PFv => CS%PFv + Accel_diag%CAu => CS%CAu + Accel_diag%CAv => CS%CAv + Accel_diag%u_accel_bt => CS%u_accel_bt + Accel_diag%v_accel_bt => CS%v_accel_bt + + allocate(CS%AD_pred) + CS%AD_pred%diffu => CS%diffu + CS%AD_pred%diffv => CS%diffv + CS%AD_pred%PFu => CS%PFu + CS%AD_pred%PFv => CS%PFv + CS%AD_pred%CAu => CS%CAu_pred + CS%AD_pred%CAv => CS%CAv_pred + CS%AD_pred%u_accel_bt => CS%u_accel_bt + CS%AD_pred%v_accel_bt => CS%v_accel_bt + +! Accel_diag%pbce => CS%pbce +! Accel_diag%u_accel_bt => CS%u_accel_bt ; Accel_diag%v_accel_bt => CS%v_accel_bt +! Accel_diag%u_av => CS%u_av ; Accel_diag%v_av => CS%v_av + + id_clock_pass_init = cpu_clock_id('(Ocean init message passing)', & + grain=CLOCK_ROUTINE) + + call continuity_init(Time, G, GV, US, param_file, diag, CS%continuity_CSp) + cont_stencil = continuity_stencil(CS%continuity_CSp) + call CoriolisAdv_init(Time, G, GV, US, param_file, diag, CS%ADp, CS%CoriolisAdv) + if (CS%calculate_SAL) call SAL_init(G, US, param_file, CS%SAL_CSp) + if (CS%use_tides) call tidal_forcing_init(Time, G, US, param_file, CS%tides_CSp) + call PressureForce_init(Time, G, GV, US, param_file, diag, CS%PressureForce_CSp, & + CS%SAL_CSp, CS%tides_CSp) + call hor_visc_init(Time, G, GV, US, param_file, diag, CS%hor_visc, ADp=CS%ADp) + call vertvisc_init(MIS, Time, G, GV, US, param_file, diag, CS%ADp, dirs, & + ntrunc, CS%vertvisc_CSp) + CS%set_visc_CSp => set_visc + call updateCFLtruncationValue(Time, CS%vertvisc_CSp, US, & + activate=is_new_run(restart_CS) ) + + if (associated(ALE_CSp)) CS%ALE_CSp => ALE_CSp + if (associated(OBC)) then + CS%OBC => OBC + if (OBC%ramp) call update_OBC_ramp(Time, CS%OBC, US, & + activate=is_new_run(restart_CS) ) + endif + if (associated(update_OBC_CSp)) CS%update_OBC_CSp => update_OBC_CSp + + eta_rest_name = "sfc" ; if (.not.GV%Boussinesq) eta_rest_name = "p_bot" + if (.not. query_initialized(CS%eta, trim(eta_rest_name), restart_CS)) then + ! Estimate eta based on the layer thicknesses - h. With the Boussinesq + ! approximation, eta is the free surface height anomaly, while without it + ! eta is the mass of ocean per unit area. eta always has the same + ! dimensions as h, either m or kg m-3. + ! CS%eta(:,:) = 0.0 already from initialization. + if (GV%Boussinesq) then + do j=js,je ; do i=is,ie ; CS%eta(i,j) = -GV%Z_to_H * G%bathyT(i,j) ; enddo ; enddo + endif + do k=1,nz ; do j=js,je ; do i=is,ie + CS%eta(i,j) = CS%eta(i,j) + h(i,j,k) + enddo ; enddo ; enddo + call set_initialized(CS%eta, trim(eta_rest_name), restart_CS) + endif + ! Copy eta into an output array. + do j=js,je ; do i=is,ie ; eta(i,j) = CS%eta(i,j) ; enddo ; enddo + + call barotropic_init(u, v, h, CS%eta, Time, G, GV, US, param_file, diag, & + CS%barotropic_CSp, restart_CS, calc_dtbt, CS%BT_cont, & + CS%SAL_CSp) + + if (.not. query_initialized(CS%diffu, "diffu", restart_CS) .or. & + .not. query_initialized(CS%diffv, "diffv", restart_CS)) then + call horizontal_viscosity(u, v, h, CS%diffu, CS%diffv, MEKE, VarMix, G, GV, US, CS%hor_visc, & + OBC=CS%OBC, BT=CS%barotropic_CSp, TD=thickness_diffuse_CSp) + call set_initialized(CS%diffu, "diffu", restart_CS) + call set_initialized(CS%diffv, "diffv", restart_CS) + endif + + if (.not. query_initialized(CS%u_av, "u2", restart_CS) .or. & + .not. query_initialized(CS%v_av, "v2", restart_CS)) then + do k=1,nz ; do j=jsd,jed ; do I=IsdB,IedB ; CS%u_av(I,j,k) = u(I,j,k) ; enddo ; enddo ; enddo + do k=1,nz ; do J=JsdB,JedB ; do i=isd,ied ; CS%v_av(i,J,k) = v(i,J,k) ; enddo ; enddo ; enddo + call set_initialized(CS%u_av, "u2", restart_CS) + call set_initialized(CS%v_av, "v2", restart_CS) + endif + + if (CS%store_CAu) then + if (query_initialized(CS%CAu_pred, "CAu", restart_CS) .and. & + query_initialized(CS%CAv_pred, "CAv", restart_CS)) then + CS%CAu_pred_stored = .true. + else + call only_read_from_restarts(uh, vh, 'uh', 'vh', G, restart_CS, stagger=CGRID_NE, & + filename=dirs%input_filename, directory=dirs%restart_input_dir, & + success=read_uv, scale=US%m_to_L**2*US%T_to_s/GV%H_to_mks) + call only_read_from_restarts('h2', CS%h_av, G, restart_CS, & + filename=dirs%input_filename, directory=dirs%restart_input_dir, & + success=read_h2, scale=1.0/GV%H_to_mks) + if (read_uv .and. read_h2) then + call pass_var(CS%h_av, G%Domain, clock=id_clock_pass_init) + else + do k=1,nz ; do j=jsd,jed ; do i=isd,ied ; h_tmp(i,j,k) = h(i,j,k) ; enddo ; enddo ; enddo + call continuity(CS%u_av, CS%v_av, h, h_tmp, uh, vh, dt, G, GV, US, CS%continuity_CSp, CS%OBC, pbv) + call pass_var(h_tmp, G%Domain, clock=id_clock_pass_init) + do k=1,nz ; do j=jsd,jed ; do i=isd,ied + CS%h_av(i,j,k) = 0.5*(h(i,j,k) + h_tmp(i,j,k)) + enddo ; enddo ; enddo + endif + call pass_vector(CS%u_av, CS%v_av, G%Domain, halo=2, clock=id_clock_pass_init, complete=.false.) + call pass_vector(uh, vh, G%Domain, halo=2, clock=id_clock_pass_init, complete=.true.) + call CorAdCalc(CS%u_av, CS%v_av, CS%h_av, uh, vh, CS%CAu_pred, CS%CAv_pred, CS%OBC, CS%ADp, & + G, GV, US, CS%CoriolisAdv, pbv) !, Waves=Waves) + CS%CAu_pred_stored = .true. + endif + else + CS%CAu_pred_stored = .false. + ! This call is just here to initialize uh and vh. + if (.not. query_initialized(uh, "uh", restart_CS) .or. & + .not. query_initialized(vh, "vh", restart_CS)) then + do k=1,nz ; do j=jsd,jed ; do i=isd,ied ; h_tmp(i,j,k) = h(i,j,k) ; enddo ; enddo ; enddo + call continuity(u, v, h, h_tmp, uh, vh, dt, G, GV, US, CS%continuity_CSp, CS%OBC, pbv) + call pass_var(h_tmp, G%Domain, clock=id_clock_pass_init) + do k=1,nz ; do j=jsd,jed ; do i=isd,ied + CS%h_av(i,j,k) = 0.5*(h(i,j,k) + h_tmp(i,j,k)) + enddo ; enddo ; enddo + call set_initialized(uh, "uh", restart_CS) + call set_initialized(vh, "vh", restart_CS) + call set_initialized(CS%h_av, "h2", restart_CS) + ! Try reading the CAu and CAv fields from the restart file, in case this restart file is + ! using a newer format. + call only_read_from_restarts(CS%CAu_pred, CS%CAv_pred, "CAu", "CAv", G, restart_CS, & + stagger=CGRID_NE, filename=dirs%input_filename, directory=dirs%restart_input_dir, & + success=read_uv, scale=US%m_s_to_L_T*US%T_to_s) + CS%CAu_pred_stored = read_uv + else + if (.not. query_initialized(CS%h_av, "h2", restart_CS)) then + CS%h_av(:,:,:) = h(:,:,:) + call set_initialized(CS%h_av, "h2", restart_CS) + endif + endif + endif + call cpu_clock_begin(id_clock_pass_init) + call create_group_pass(pass_av_h_uvh, CS%u_av, CS%v_av, G%Domain, halo=2) + if (CS%CAu_pred_stored) then + call create_group_pass(pass_av_h_uvh, CS%CAu_pred, CS%CAv_pred, G%Domain, halo=2) + else + call create_group_pass(pass_av_h_uvh, CS%h_av, G%Domain, halo=2) + call create_group_pass(pass_av_h_uvh, uh, vh, G%Domain, halo=2) + endif + call do_group_pass(pass_av_h_uvh, G%Domain) + call cpu_clock_end(id_clock_pass_init) + + flux_units = get_flux_units(GV) + thickness_units = get_thickness_units(GV) + CS%id_uh = register_diag_field('ocean_model', 'uh', diag%axesCuL, Time, & + 'Zonal Thickness Flux', flux_units, conversion=GV%H_to_MKS*US%L_to_m**2*US%s_to_T, & + y_cell_method='sum', v_extensive=.true.) + CS%id_vh = register_diag_field('ocean_model', 'vh', diag%axesCvL, Time, & + 'Meridional Thickness Flux', flux_units, conversion=GV%H_to_MKS*US%L_to_m**2*US%s_to_T, & + x_cell_method='sum', v_extensive=.true.) + + CS%id_CAu = register_diag_field('ocean_model', 'CAu', diag%axesCuL, Time, & + 'Zonal Coriolis and Advective Acceleration', 'm s-2', conversion=US%L_T2_to_m_s2) + CS%id_CAv = register_diag_field('ocean_model', 'CAv', diag%axesCvL, Time, & + 'Meridional Coriolis and Advective Acceleration', 'm s-2', conversion=US%L_T2_to_m_s2) + CS%id_PFu = register_diag_field('ocean_model', 'PFu', diag%axesCuL, Time, & + 'Zonal Pressure Force Acceleration', 'm s-2', conversion=US%L_T2_to_m_s2) + CS%id_PFv = register_diag_field('ocean_model', 'PFv', diag%axesCvL, Time, & + 'Meridional Pressure Force Acceleration', 'm s-2', conversion=US%L_T2_to_m_s2) + CS%id_ueffA = register_diag_field('ocean_model', 'ueffA', diag%axesCuL, Time, & + 'Effective U-Face Area', 'm^2', conversion=GV%H_to_m*US%L_to_m, & + y_cell_method='sum', v_extensive=.true.) + CS%id_veffA = register_diag_field('ocean_model', 'veffA', diag%axesCvL, Time, & + 'Effective V-Face Area', 'm^2', conversion=GV%H_to_m*US%L_to_m, & + x_cell_method='sum', v_extensive=.true.) + if (GV%Boussinesq) then + CS%id_deta_dt = register_diag_field('ocean_model', 'deta_dt', diag%axesT1, Time, & + 'Barotropic SSH tendency due to dynamics', trim(thickness_units)//' s-1', conversion=GV%H_to_MKS*US%s_to_T) + else + CS%id_deta_dt = register_diag_field('ocean_model', 'deta_dt', diag%axesT1, Time, & + 'Barotropic column-mass tendency due to dynamics', trim(thickness_units)//' s-1', & + conversion=GV%H_to_mks*US%s_to_T) + endif + + !CS%id_hf_PFu = register_diag_field('ocean_model', 'hf_PFu', diag%axesCuL, Time, & + ! 'Fractional Thickness-weighted Zonal Pressure Force Acceleration', & + ! 'm s-2', v_extensive=.true., conversion=US%L_T2_to_m_s2) + !if (CS%id_hf_PFu > 0) call safe_alloc_ptr(CS%ADp%diag_hfrac_u,IsdB,IedB,jsd,jed,nz) + + !CS%id_hf_PFv = register_diag_field('ocean_model', 'hf_PFv', diag%axesCvL, Time, & + ! 'Fractional Thickness-weighted Meridional Pressure Force Acceleration', & + ! 'm s-2', v_extensive=.true., conversion=US%L_T2_to_m_s2) + !if (CS%id_hf_PFv > 0) call safe_alloc_ptr(CS%ADp%diag_hfrac_v,isd,ied,JsdB,JedB,nz) + + !CS%id_hf_CAu = register_diag_field('ocean_model', 'hf_CAu', diag%axesCuL, Time, & + ! 'Fractional Thickness-weighted Zonal Coriolis and Advective Acceleration', & + ! 'm s-2', v_extensive=.true., conversion=US%L_T2_to_m_s2) + !if (CS%id_hf_CAu > 0) call safe_alloc_ptr(CS%ADp%diag_hfrac_u,IsdB,IedB,jsd,jed,nz) + + !CS%id_hf_CAv = register_diag_field('ocean_model', 'hf_CAv', diag%axesCvL, Time, & + ! 'Fractional Thickness-weighted Meridional Coriolis and Advective Acceleration', & + ! 'm s-2', v_extensive=.true., conversion=US%L_T2_to_m_s2) + !if (CS%id_hf_CAv > 0) call safe_alloc_ptr(CS%ADp%diag_hfrac_v,isd,ied,JsdB,JedB,nz) + + CS%id_hf_PFu_2d = register_diag_field('ocean_model', 'hf_PFu_2d', diag%axesCu1, Time, & + 'Depth-sum Fractional Thickness-weighted Zonal Pressure Force Acceleration', & + 'm s-2', conversion=US%L_T2_to_m_s2) + if (CS%id_hf_PFu_2d > 0) call safe_alloc_ptr(CS%ADp%diag_hfrac_u,IsdB,IedB,jsd,jed,nz) + + CS%id_hf_PFv_2d = register_diag_field('ocean_model', 'hf_PFv_2d', diag%axesCv1, Time, & + 'Depth-sum Fractional Thickness-weighted Meridional Pressure Force Acceleration', & + 'm s-2', conversion=US%L_T2_to_m_s2) + if (CS%id_hf_PFv_2d > 0) call safe_alloc_ptr(CS%ADp%diag_hfrac_v,isd,ied,JsdB,JedB,nz) + + CS%id_h_PFu = register_diag_field('ocean_model', 'h_PFu', diag%axesCuL, Time, & + 'Thickness Multiplied Zonal Pressure Force Acceleration', & + 'm2 s-2', conversion=GV%H_to_m*US%L_T2_to_m_s2) + if (CS%id_h_PFu > 0) call safe_alloc_ptr(CS%ADp%diag_hu,IsdB,IedB,jsd,jed,nz) + + CS%id_h_PFv = register_diag_field('ocean_model', 'h_PFv', diag%axesCvL, Time, & + 'Thickness Multiplied Meridional Pressure Force Acceleration', & + 'm2 s-2', conversion=GV%H_to_m*US%L_T2_to_m_s2) + if (CS%id_h_PFv > 0) call safe_alloc_ptr(CS%ADp%diag_hv,isd,ied,JsdB,JedB,nz) + + CS%id_intz_PFu_2d = register_diag_field('ocean_model', 'intz_PFu_2d', diag%axesCu1, Time, & + 'Depth-integral of Zonal Pressure Force Acceleration', & + 'm2 s-2', conversion=GV%H_to_m*US%L_T2_to_m_s2) + if (CS%id_intz_PFu_2d > 0) call safe_alloc_ptr(CS%ADp%diag_hu,IsdB,IedB,jsd,jed,nz) + + CS%id_intz_PFv_2d = register_diag_field('ocean_model', 'intz_PFv_2d', diag%axesCv1, Time, & + 'Depth-integral of Meridional Pressure Force Acceleration', & + 'm2 s-2', conversion=GV%H_to_m*US%L_T2_to_m_s2) + if (CS%id_intz_PFv_2d > 0) call safe_alloc_ptr(CS%ADp%diag_hv,isd,ied,JsdB,JedB,nz) + + CS%id_hf_CAu_2d = register_diag_field('ocean_model', 'hf_CAu_2d', diag%axesCu1, Time, & + 'Depth-sum Fractional Thickness-weighted Zonal Coriolis and Advective Acceleration', & + 'm s-2', conversion=US%L_T2_to_m_s2) + if (CS%id_hf_CAu_2d > 0) call safe_alloc_ptr(CS%ADp%diag_hfrac_u,IsdB,IedB,jsd,jed,nz) + + CS%id_hf_CAv_2d = register_diag_field('ocean_model', 'hf_CAv_2d', diag%axesCv1, Time, & + 'Depth-sum Fractional Thickness-weighted Meridional Coriolis and Advective Acceleration', & + 'm s-2', conversion=US%L_T2_to_m_s2) + if (CS%id_hf_CAv_2d > 0) call safe_alloc_ptr(CS%ADp%diag_hfrac_v,isd,ied,JsdB,JedB,nz) + + CS%id_h_CAu = register_diag_field('ocean_model', 'h_CAu', diag%axesCuL, Time, & + 'Thickness Multiplied Zonal Coriolis and Advective Acceleration', & + 'm2 s-2', conversion=GV%H_to_m*US%L_T2_to_m_s2) + if (CS%id_h_CAu > 0) call safe_alloc_ptr(CS%ADp%diag_hu,IsdB,IedB,jsd,jed,nz) + + CS%id_h_CAv = register_diag_field('ocean_model', 'h_CAv', diag%axesCvL, Time, & + 'Thickness Multiplied Meridional Coriolis and Advective Acceleration', & + 'm2 s-2', conversion=GV%H_to_m*US%L_T2_to_m_s2) + if (CS%id_h_CAv > 0) call safe_alloc_ptr(CS%ADp%diag_hv,isd,ied,JsdB,JedB,nz) + + CS%id_intz_CAu_2d = register_diag_field('ocean_model', 'intz_CAu_2d', diag%axesCu1, Time, & + 'Depth-integral of Zonal Coriolis and Advective Acceleration', & + 'm2 s-2', conversion=GV%H_to_m*US%L_T2_to_m_s2) + if (CS%id_intz_CAu_2d > 0) call safe_alloc_ptr(CS%ADp%diag_hu,IsdB,IedB,jsd,jed,nz) + + CS%id_intz_CAv_2d = register_diag_field('ocean_model', 'intz_CAv_2d', diag%axesCv1, Time, & + 'Depth-integral of Meridional Coriolis and Advective Acceleration', & + 'm2 s-2', conversion=GV%H_to_m*US%L_T2_to_m_s2) + if (CS%id_intz_CAv_2d > 0) call safe_alloc_ptr(CS%ADp%diag_hv,isd,ied,JsdB,JedB,nz) + + CS%id_uav = register_diag_field('ocean_model', 'uav', diag%axesCuL, Time, & + 'Barotropic-step Averaged Zonal Velocity', 'm s-1', conversion=US%L_T_to_m_s) + CS%id_vav = register_diag_field('ocean_model', 'vav', diag%axesCvL, Time, & + 'Barotropic-step Averaged Meridional Velocity', 'm s-1', conversion=US%L_T_to_m_s) + + CS%id_u_BT_accel = register_diag_field('ocean_model', 'u_BT_accel', diag%axesCuL, Time, & + 'Barotropic Anomaly Zonal Acceleration', 'm s-2', conversion=US%L_T2_to_m_s2) + CS%id_v_BT_accel = register_diag_field('ocean_model', 'v_BT_accel', diag%axesCvL, Time, & + 'Barotropic Anomaly Meridional Acceleration', 'm s-2', conversion=US%L_T2_to_m_s2) + + !CS%id_hf_u_BT_accel = register_diag_field('ocean_model', 'hf_u_BT_accel', diag%axesCuL, Time, & + ! 'Fractional Thickness-weighted Barotropic Anomaly Zonal Acceleration', & + ! 'm s-2', v_extensive=.true., conversion=US%L_T2_to_m_s2) + !if (CS%id_hf_u_BT_accel > 0) call safe_alloc_ptr(CS%ADp%diag_hfrac_u,IsdB,IedB,jsd,jed,nz) + + !CS%id_hf_v_BT_accel = register_diag_field('ocean_model', 'hf_v_BT_accel', diag%axesCvL, Time, & + ! 'Fractional Thickness-weighted Barotropic Anomaly Meridional Acceleration', & + ! 'm s-2', v_extensive=.true., conversion=US%L_T2_to_m_s2) + !if (CS%id_hf_v_BT_accel > 0) call safe_alloc_ptr(CS%ADp%diag_hfrac_v,isd,ied,JsdB,JedB,nz) + + CS%id_hf_u_BT_accel_2d = register_diag_field('ocean_model', 'hf_u_BT_accel_2d', diag%axesCu1, Time, & + 'Depth-sum Fractional Thickness-weighted Barotropic Anomaly Zonal Acceleration', & + 'm s-2', conversion=US%L_T2_to_m_s2) + if (CS%id_hf_u_BT_accel_2d > 0) call safe_alloc_ptr(CS%ADp%diag_hfrac_u,IsdB,IedB,jsd,jed,nz) + + CS%id_hf_v_BT_accel_2d = register_diag_field('ocean_model', 'hf_v_BT_accel_2d', diag%axesCv1, Time, & + 'Depth-sum Fractional Thickness-weighted Barotropic Anomaly Meridional Acceleration', & + 'm s-2', conversion=US%L_T2_to_m_s2) + if (CS%id_hf_v_BT_accel_2d > 0) call safe_alloc_ptr(CS%ADp%diag_hfrac_v,isd,ied,JsdB,JedB,nz) + + CS%id_h_u_BT_accel = register_diag_field('ocean_model', 'h_u_BT_accel', diag%axesCuL, Time, & + 'Thickness Multiplied Barotropic Anomaly Zonal Acceleration', & + 'm2 s-2', conversion=GV%H_to_m*US%L_T2_to_m_s2) + if (CS%id_h_u_BT_accel > 0) call safe_alloc_ptr(CS%ADp%diag_hu,IsdB,IedB,jsd,jed,nz) + + CS%id_h_v_BT_accel = register_diag_field('ocean_model', 'h_v_BT_accel', diag%axesCvL, Time, & + 'Thickness Multiplied Barotropic Anomaly Meridional Acceleration', & + 'm2 s-2', conversion=GV%H_to_m*US%L_T2_to_m_s2) + if (CS%id_h_v_BT_accel > 0) call safe_alloc_ptr(CS%ADp%diag_hv,isd,ied,JsdB,JedB,nz) + + CS%id_intz_u_BT_accel_2d = register_diag_field('ocean_model', 'intz_u_BT_accel_2d', diag%axesCu1, Time, & + 'Depth-integral of Barotropic Anomaly Zonal Acceleration', & + 'm2 s-2', conversion=GV%H_to_m*US%L_T2_to_m_s2) + if (CS%id_intz_u_BT_accel_2d > 0) call safe_alloc_ptr(CS%ADp%diag_hu,IsdB,IedB,jsd,jed,nz) + + CS%id_intz_v_BT_accel_2d = register_diag_field('ocean_model', 'intz_v_BT_accel_2d', diag%axesCv1, Time, & + 'Depth-integral of Barotropic Anomaly Meridional Acceleration', & + 'm2 s-2', conversion=GV%H_to_m*US%L_T2_to_m_s2) + if (CS%id_intz_v_BT_accel_2d > 0) call safe_alloc_ptr(CS%ADp%diag_hv,isd,ied,JsdB,JedB,nz) + + CS%id_PFu_visc_rem = register_diag_field('ocean_model', 'PFu_visc_rem', diag%axesCuL, Time, & + 'Zonal Pressure Force Acceleration multiplied by the viscous remnant', & + 'm s-2', conversion=US%L_T2_to_m_s2) + if (CS%id_PFu_visc_rem > 0) call safe_alloc_ptr(CS%ADp%visc_rem_u,IsdB,IedB,jsd,jed,nz) + CS%id_PFv_visc_rem = register_diag_field('ocean_model', 'PFv_visc_rem', diag%axesCvL, Time, & + 'Meridional Pressure Force Acceleration multiplied by the viscous remnant', & + 'm s-2', conversion=US%L_T2_to_m_s2) + if (CS%id_PFv_visc_rem > 0) call safe_alloc_ptr(CS%ADp%visc_rem_v,isd,ied,JsdB,JedB,nz) + + CS%id_CAu_visc_rem = register_diag_field('ocean_model', 'CAu_visc_rem', diag%axesCuL, Time, & + 'Zonal Coriolis and Advective Acceleration multiplied by the viscous remnant', & + 'm s-2', conversion=US%L_T2_to_m_s2) + if (CS%id_CAu_visc_rem > 0) call safe_alloc_ptr(CS%ADp%visc_rem_u,IsdB,IedB,jsd,jed,nz) + CS%id_CAv_visc_rem = register_diag_field('ocean_model', 'CAv_visc_rem', diag%axesCvL, Time, & + 'Meridional Coriolis and Advective Acceleration multiplied by the viscous remnant', & + 'm s-2', conversion=US%L_T2_to_m_s2) + if (CS%id_CAv_visc_rem > 0) call safe_alloc_ptr(CS%ADp%visc_rem_v,isd,ied,JsdB,JedB,nz) + + CS%id_u_BT_accel_visc_rem = register_diag_field('ocean_model', 'u_BT_accel_visc_rem', diag%axesCuL, Time, & + 'Barotropic Anomaly Zonal Acceleration multiplied by the viscous remnant', & + 'm s-2', conversion=US%L_T2_to_m_s2) + if (CS%id_u_BT_accel_visc_rem > 0) call safe_alloc_ptr(CS%ADp%visc_rem_u,IsdB,IedB,jsd,jed,nz) + CS%id_v_BT_accel_visc_rem = register_diag_field('ocean_model', 'v_BT_accel_visc_rem', diag%axesCvL, Time, & + 'Barotropic Anomaly Meridional Acceleration multiplied by the viscous remnant', & + 'm s-2', conversion=US%L_T2_to_m_s2) + if (CS%id_v_BT_accel_visc_rem > 0) call safe_alloc_ptr(CS%ADp%visc_rem_v,isd,ied,JsdB,JedB,nz) + + id_clock_Cor = cpu_clock_id('(Ocean Coriolis & mom advection)', grain=CLOCK_MODULE) + id_clock_continuity = cpu_clock_id('(Ocean continuity equation)', grain=CLOCK_MODULE) + id_clock_pres = cpu_clock_id('(Ocean pressure force)', grain=CLOCK_MODULE) + id_clock_vertvisc = cpu_clock_id('(Ocean vertical viscosity)', grain=CLOCK_MODULE) + id_clock_horvisc = cpu_clock_id('(Ocean horizontal viscosity)', grain=CLOCK_MODULE) + id_clock_mom_update = cpu_clock_id('(Ocean momentum increments)', grain=CLOCK_MODULE) + id_clock_pass = cpu_clock_id('(Ocean message passing)', grain=CLOCK_MODULE) + id_clock_btcalc = cpu_clock_id('(Ocean barotropic mode calc)', grain=CLOCK_MODULE) + id_clock_btstep = cpu_clock_id('(Ocean barotropic mode stepping)', grain=CLOCK_MODULE) + id_clock_btforce = cpu_clock_id('(Ocean barotropic forcing calc)', grain=CLOCK_MODULE) + +end subroutine initialize_dyn_split_RK2b + + +!> Close the dyn_split_RK2b module +subroutine end_dyn_split_RK2b(CS) + type(MOM_dyn_split_RK2b_CS), pointer :: CS !< module control structure + + call barotropic_end(CS%barotropic_CSp) + + call vertvisc_end(CS%vertvisc_CSp) + deallocate(CS%vertvisc_CSp) + + call hor_visc_end(CS%hor_visc) + if (CS%calculate_SAL) call SAL_end(CS%SAL_CSp) + if (CS%use_tides) call tidal_forcing_end(CS%tides_CSp) + call CoriolisAdv_end(CS%CoriolisAdv) + + DEALLOC_(CS%diffu) ; DEALLOC_(CS%diffv) + DEALLOC_(CS%CAu) ; DEALLOC_(CS%CAv) + DEALLOC_(CS%CAu_pred) ; DEALLOC_(CS%CAv_pred) + DEALLOC_(CS%PFu) ; DEALLOC_(CS%PFv) + + if (associated(CS%taux_bot)) deallocate(CS%taux_bot) + if (associated(CS%tauy_bot)) deallocate(CS%tauy_bot) + DEALLOC_(CS%uhbt) ; DEALLOC_(CS%vhbt) + DEALLOC_(CS%u_accel_bt) ; DEALLOC_(CS%v_accel_bt) + DEALLOC_(CS%visc_rem_u) ; DEALLOC_(CS%visc_rem_v) + + DEALLOC_(CS%eta) ; DEALLOC_(CS%eta_PF) ; DEALLOC_(CS%pbce) + DEALLOC_(CS%h_av) ; DEALLOC_(CS%u_av) ; DEALLOC_(CS%v_av) + + call dealloc_BT_cont_type(CS%BT_cont) + deallocate(CS%AD_pred) + + deallocate(CS) +end subroutine end_dyn_split_RK2b + + +!> \namespace mom_dynamics_split_rk2b +!! +!! This file time steps the adiabatic dynamic core by splitting +!! between baroclinic and barotropic modes. It uses a pseudo-second order +!! Runge-Kutta time stepping scheme for the baroclinic momentum +!! equation and a forward-backward coupling between the baroclinic +!! momentum and continuity equations. This split time-stepping +!! scheme is described in detail in Hallberg (JCP, 1997). Additional +!! issues related to exact tracer conservation and how to +!! ensure consistency between the barotropic and layered estimates +!! of the free surface height are described in Hallberg and +!! Adcroft (Ocean Modelling, 2009). This was the time stepping code +!! that is used for most GOLD applications, including GFDL's ESM2G +!! Earth system model, and all of the examples provided with the +!! MOM code (although several of these solutions are routinely +!! verified by comparison with the slower unsplit schemes). +!! +!! The subroutine step_MOM_dyn_split_RK2b actually does the time +!! stepping, while register_restarts_dyn_split_RK2b sets the fields +!! that are found in a full restart file with this scheme, and +!! initialize_dyn_split_RK2b initializes the cpu clocks that are +!! used in this module. For largely historical reasons, this module +!! does not have its own control structure, but shares the same +!! control structure with MOM.F90 and the other MOM_dynamics_... +!! modules. + +end module MOM_dynamics_split_RK2b