From 9d90e04c0a0e030e38d818b1eada81fb12fff470 Mon Sep 17 00:00:00 2001 From: Robert Hallberg Date: Sun, 31 Mar 2024 12:44:26 -0400 Subject: [PATCH] Refactoring density integrals for efficiency Refactored 4 routines (int_density_generic_pcm, int_density_generic_ppm, int_spec_vol_generic_pcm and int_spec_vol_generic_plm) in density integrals for greater computational efficiency by doing fewer calls to the equation of state routines but calculating entire rows of densities at subgrid locations with each each call, replicating what was already being done int_density_dz_generic_plm. To accomplish this, a number of variables now use larger arrays than previously. The total computational cost of the non-Boussinesq pressure gradient force calculation was more than 50% greater with the previous code in some tests. All answers are bitwise identical. --- src/core/MOM_density_integrals.F90 | 1241 ++++++++++++++++------------ 1 file changed, 716 insertions(+), 525 deletions(-) diff --git a/src/core/MOM_density_integrals.F90 b/src/core/MOM_density_integrals.F90 index 9fed528e71..b73524e362 100644 --- a/src/core/MOM_density_integrals.F90 +++ b/src/core/MOM_density_integrals.F90 @@ -141,14 +141,21 @@ subroutine int_density_dz_generic_pcm(T, S, z_t, z_b, rho_ref, rho_0, G_e, HI, & real, optional, intent(in) :: Z_0p !< The height at which the pressure is 0 [Z ~> m] ! Local variables - real :: T5(5), S5(5) ! Temperatures and salinities at five quadrature points [C ~> degC] and [S ~> ppt] - real :: p5(5) ! Pressures at five quadrature points [R L2 T-2 ~> Pa] - real :: r5(5) ! Densities at five quadrature points [R ~> kg m-3] + real :: T5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Temperatures along a line of subgrid locations [C ~> degC] + real :: S5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Salinities along a line of subgrid locations [S ~> ppt] + real :: p5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Pressures along a line of subgrid locations [R L2 T-2 ~> Pa] + real :: r5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Densities anomalies along a line of subgrid locations [R ~> kg m-3] + real :: T15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Temperatures at an array of subgrid locations [C ~> degC] + real :: S15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Salinities at an array of subgrid locations [S ~> ppt] + real :: p15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Pressures at an array of subgrid locations [R L2 T-2 ~> Pa] + real :: r15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Densities at an array of subgrid locations [R ~> kg m-3] real :: rho_anom ! The depth averaged density anomaly [R ~> kg m-3] real, parameter :: C1_90 = 1.0/90.0 ! A rational constant [nondim] real :: GxRho ! The product of the gravitational acceleration and reference density [R L2 Z-1 T-2 ~> Pa m-1] real :: I_Rho ! The inverse of the Boussinesq density [R-1 ~> m3 kg-1] real :: dz ! The layer thickness [Z ~> m] + real :: dz_x(5,HI%iscB:HI%iecB) ! Layer thicknesses along an x-line of subgrid locations [Z ~> m] + real :: dz_y(5,HI%isc:HI%iec) ! Layer thicknesses along a y-line of subgrid locations [Z ~> m] real :: z0pres ! The height at which the pressure is zero [Z ~> m] real :: hWght ! A pressure-thickness below topography [Z ~> m] real :: hL, hR ! Pressure-thicknesses of the columns to the left and right [Z ~> m] @@ -162,7 +169,10 @@ subroutine int_density_dz_generic_pcm(T, S, z_t, z_b, rho_ref, rho_0, G_e, HI, & logical :: do_massWeight ! Indicates whether to do mass weighting. logical :: use_rho_ref ! Pass rho_ref to the equation of state for more accurate calculation ! of density anomalies. - integer :: is, ie, js, je, Isq, Ieq, Jsq, Jeq, i, j, m, n + integer, dimension(2) :: EOSdom_h5 ! The 5-point h-point i-computational domain for the equation of state + integer, dimension(2) :: EOSdom_q15 ! The 3x5-point q-point i-computational domain for the equation of state + integer, dimension(2) :: EOSdom_h15 ! The 3x5-point h-point i-computational domain for the equation of state + integer :: is, ie, js, je, Isq, Ieq, Jsq, Jeq, i, j, m, n, pos ! These array bounds work for the indexing convention of the input arrays, but ! on the computational domain defined for the output arrays. @@ -188,123 +198,169 @@ subroutine int_density_dz_generic_pcm(T, S, z_t, z_b, rho_ref, rho_0, G_e, HI, & "dz_neglect must be present if useMassWghtInterp is present and true.") endif ; endif - do j=Jsq,Jeq+1 ; do i=Isq,Ieq+1 - dz = z_t(i,j) - z_b(i,j) - do n=1,5 - T5(n) = T(i,j) ; S5(n) = S(i,j) - p5(n) = -GxRho*((z_t(i,j) - z0pres) - 0.25*real(n-1)*dz) + ! Set the loop ranges for equation of state calculations at various points. + EOSdom_h5(1) = 1 ; EOSdom_h5(2) = 5*(Ieq-Isq+2) + EOSdom_q15(1) = 1 ; EOSdom_q15(2) = 15*(Ieq-Isq+1) + EOSdom_h15(1) = 1 ; EOSdom_h15(2) = 15*(HI%iec-HI%isc+1) + + do j=Jsq,Jeq+1 + do i=Isq,Ieq+1 + dz = z_t(i,j) - z_b(i,j) + do n=1,5 + T5(i*5+n) = T(i,j) ; S5(i*5+n) = S(i,j) + p5(i*5+n) = -GxRho*((z_t(i,j) - z0pres) - 0.25*real(n-1)*dz) + enddo enddo + if (use_rho_ref) then - call calculate_density(T5, S5, p5, r5, EOS, rho_ref=rho_ref) - ! Use Boole's rule to estimate the pressure anomaly change. - rho_anom = C1_90*(7.0*(r5(1)+r5(5)) + 32.0*(r5(2)+r5(4)) + 12.0*r5(3)) + call calculate_density(T5, S5, p5, r5, EOS, EOSdom_h5, rho_ref=rho_ref) else - call calculate_density(T5, S5, p5, r5, EOS) - ! Use Boole's rule to estimate the pressure anomaly change. - rho_anom = C1_90*(7.0*(r5(1)+r5(5)) + 32.0*(r5(2)+r5(4)) + 12.0*r5(3)) - rho_ref + call calculate_density(T5, S5, p5, r5, EOS, EOSdom_h5) endif - dpa(i,j) = G_e*dz*rho_anom - ! Use a Boole's-rule-like fifth-order accurate estimate of the double integral of - ! the pressure anomaly. - if (present(intz_dpa)) intz_dpa(i,j) = 0.5*G_e*dz**2 * & - (rho_anom - C1_90*(16.0*(r5(4)-r5(2)) + 7.0*(r5(5)-r5(1))) ) - enddo ; enddo + do i=Isq,Ieq+1 + ! Use Boole's rule to estimate the pressure anomaly change. + rho_anom = C1_90*(7.0*(r5(i*5+1)+r5(i*5+5)) + 32.0*(r5(i*5+2)+r5(i*5+4)) + 12.0*r5(i*5+3)) + if (.not.use_rho_ref) rho_anom = rho_anom - rho_ref + dz = z_t(i,j) - z_b(i,j) + dpa(i,j) = G_e*dz*rho_anom + ! Use a Boole's-rule-like fifth-order accurate estimate of the double integral of + ! the pressure anomaly. + if (present(intz_dpa)) intz_dpa(i,j) = 0.5*G_e*dz**2 * & + (rho_anom - C1_90*(16.0*(r5(i*5+4)-r5(i*5+2)) + 7.0*(r5(i*5+5)-r5(i*5+1))) ) + enddo + enddo - if (present(intx_dpa)) then ; do j=js,je ; do I=Isq,Ieq - ! hWght is the distance measure by which the cell is violation of - ! hydrostatic consistency. For large hWght we bias the interpolation of - ! T & S along the top and bottom integrals, akin to thickness weighting. - hWght = 0.0 - if (do_massWeight) & - hWght = max(0., -bathyT(i,j)-z_t(i+1,j), -bathyT(i+1,j)-z_t(i,j)) - if (hWght > 0.) then - hL = (z_t(i,j) - z_b(i,j)) + dz_neglect - hR = (z_t(i+1,j) - z_b(i+1,j)) + dz_neglect - hWght = hWght * ( (hL-hR)/(hL+hR) )**2 - iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) - hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom - hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom + if (present(intx_dpa)) then ; do j=js,je + do I=Isq,Ieq + ! hWght is the distance measure by which the cell is violation of + ! hydrostatic consistency. For large hWght we bias the interpolation of + ! T & S along the top and bottom integrals, akin to thickness weighting. + hWght = 0.0 + if (do_massWeight) & + hWght = max(0., -bathyT(i,j)-z_t(i+1,j), -bathyT(i+1,j)-z_t(i,j)) + if (hWght > 0.) then + hL = (z_t(i,j) - z_b(i,j)) + dz_neglect + hR = (z_t(i+1,j) - z_b(i+1,j)) + dz_neglect + hWght = hWght * ( (hL-hR)/(hL+hR) )**2 + iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) + hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom + hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom + else + hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 + endif + + do m=2,4 + ! T, S, and z are interpolated in the horizontal. The z interpolation + ! is linear, but for T and S it may be thickness weighted. + wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L + wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR + dz_x(m,i) = wt_L*(z_t(i,j) - z_b(i,j)) + wt_R*(z_t(i+1,j) - z_b(i+1,j)) + pos = i*15+(m-2)*5 + T15(pos+1) = wtT_L*T(i,j) + wtT_R*T(i+1,j) + S15(pos+1) = wtT_L*S(i,j) + wtT_R*S(i+1,j) + p15(pos+1) = -GxRho*((wt_L*z_t(i,j) + wt_R*z_t(i+1,j)) - z0pres) + do n=2,5 + T15(pos+n) = T15(pos+1) ; S15(pos+n) = S15(pos+1) + p15(pos+n) = p15(pos+n-1) + GxRho*0.25*dz_x(m,i) + enddo + enddo + enddo + + if (use_rho_ref) then + call calculate_density(T15, S15, p15, r15, EOS, EOSdom_q15, rho_ref=rho_ref) else - hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 + call calculate_density(T15, S15, p15, r15, EOS, EOSdom_q15) endif - intz(1) = dpa(i,j) ; intz(5) = dpa(i+1,j) - do m=2,4 - ! T, S, and z are interpolated in the horizontal. The z interpolation - ! is linear, but for T and S it may be thickness weighted. - wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L - wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR - dz = wt_L*(z_t(i,j) - z_b(i,j)) + wt_R*(z_t(i+1,j) - z_b(i+1,j)) - T5(1) = wtT_L*T(i,j) + wtT_R*T(i+1,j) - S5(1) = wtT_L*S(i,j) + wtT_R*S(i+1,j) - p5(1) = -GxRho*((wt_L*z_t(i,j) + wt_R*z_t(i+1,j)) - z0pres) - do n=2,5 - T5(n) = T5(1) ; S5(n) = S5(1) ; p5(n) = p5(n-1) + GxRho*0.25*dz - enddo + do I=Isq,Ieq + intz(1) = dpa(i,j) ; intz(5) = dpa(i+1,j) + ! Use Boole's rule to estimate the pressure anomaly change. if (use_rho_ref) then - call calculate_density(T5, S5, p5, r5, EOS, rho_ref=rho_ref) - ! Use Boole's rule to estimate the pressure anomaly change. - intz(m) = G_e*dz*( C1_90*(7.0*(r5(1)+r5(5)) + 32.0*(r5(2)+r5(4)) + 12.0*r5(3))) + do m=2,4 + pos = i*15+(m-2)*5 + intz(m) = G_e*dz_x(m,i)*( C1_90*( 7.0*(r15(pos+1)+r15(pos+5)) + & + 32.0*(r15(pos+2)+r15(pos+4)) + & + 12.0*r15(pos+3))) + enddo else - call calculate_density(T5, S5, p5, r5, EOS) - ! Use Boole's rule to estimate the pressure anomaly change. - intz(m) = G_e*dz*( C1_90*(7.0*(r5(1)+r5(5)) + 32.0*(r5(2)+r5(4)) + 12.0*r5(3)) - rho_ref ) + do m=2,4 + pos = i*15+(m-2)*5 + intz(m) = G_e*dz_x(m,i)*( C1_90*( 7.0*(r15(pos+1)+r15(pos+5)) + & + 32.0*(r15(pos+2)+r15(pos+4)) + & + 12.0*r15(pos+3)) - rho_ref ) + enddo endif + ! Use Boole's rule to integrate the bottom pressure anomaly values in x. + intx_dpa(i,j) = C1_90*(7.0*(intz(1)+intz(5)) + 32.0*(intz(2)+intz(4)) + & + 12.0*intz(3)) + enddo + enddo ; endif + if (present(inty_dpa)) then ; do J=Jsq,Jeq + do i=is,ie + ! hWght is the distance measure by which the cell is violation of + ! hydrostatic consistency. For large hWght we bias the interpolation of + ! T & S along the top and bottom integrals, akin to thickness weighting. + hWght = 0.0 + if (do_massWeight) & + hWght = max(0., -bathyT(i,j)-z_t(i,j+1), -bathyT(i,j+1)-z_t(i,j)) + if (hWght > 0.) then + hL = (z_t(i,j) - z_b(i,j)) + dz_neglect + hR = (z_t(i,j+1) - z_b(i,j+1)) + dz_neglect + hWght = hWght * ( (hL-hR)/(hL+hR) )**2 + iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) + hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom + hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom + else + hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 + endif + + do m=2,4 + ! T, S, and z are interpolated in the horizontal. The z interpolation + ! is linear, but for T and S it may be thickness weighted. + wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L + wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR + dz_y(m,i) = wt_L*(z_t(i,j) - z_b(i,j)) + wt_R*(z_t(i,j+1) - z_b(i,j+1)) + pos = i*15+(m-2)*5 + T15(pos+1) = wtT_L*T(i,j) + wtT_R*T(i,j+1) + S15(pos+1) = wtT_L*S(i,j) + wtT_R*S(i,j+1) + p15(pos+1) = -GxRho*((wt_L*z_t(i,j) + wt_R*z_t(i,j+1)) - z0pres) + do n=2,5 + T15(pos+n) = T15(pos+1) ; S15(pos+n) = S15(pos+1) + p15(pos+n) = p15(pos+n-1) + GxRho*0.25*dz_y(m,i) + enddo + enddo enddo - ! Use Boole's rule to integrate the bottom pressure anomaly values in x. - intx_dpa(i,j) = C1_90*(7.0*(intz(1)+intz(5)) + 32.0*(intz(2)+intz(4)) + & - 12.0*intz(3)) - enddo ; enddo ; endif - if (present(inty_dpa)) then ; do J=Jsq,Jeq ; do i=is,ie - ! hWght is the distance measure by which the cell is violation of - ! hydrostatic consistency. For large hWght we bias the interpolation of - ! T & S along the top and bottom integrals, akin to thickness weighting. - hWght = 0.0 - if (do_massWeight) & - hWght = max(0., -bathyT(i,j)-z_t(i,j+1), -bathyT(i,j+1)-z_t(i,j)) - if (hWght > 0.) then - hL = (z_t(i,j) - z_b(i,j)) + dz_neglect - hR = (z_t(i,j+1) - z_b(i,j+1)) + dz_neglect - hWght = hWght * ( (hL-hR)/(hL+hR) )**2 - iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) - hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom - hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom + if (use_rho_ref) then + call calculate_density(T15(15*HI%isc+1:), S15(15*HI%isc+1:), p15(15*HI%isc+1:), & + r15(15*HI%isc+1:), EOS, EOSdom_h15, rho_ref=rho_ref) else - hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 + call calculate_density(T15(15*HI%isc+1:), S15(15*HI%isc+1:), p15(15*HI%isc+1:), & + r15(15*HI%isc+1:), EOS, EOSdom_h15) endif - intz(1) = dpa(i,j) ; intz(5) = dpa(i,j+1) - do m=2,4 - ! T, S, and z are interpolated in the horizontal. The z interpolation - ! is linear, but for T and S it may be thickness weighted. - wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L - wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR - dz = wt_L*(z_t(i,j) - z_b(i,j)) + wt_R*(z_t(i,j+1) - z_b(i,j+1)) - T5(1) = wtT_L*T(i,j) + wtT_R*T(i,j+1) - S5(1) = wtT_L*S(i,j) + wtT_R*S(i,j+1) - p5(1) = -GxRho*((wt_L*z_t(i,j) + wt_R*z_t(i,j+1)) - z0pres) - do n=2,5 - T5(n) = T5(1) ; S5(n) = S5(1) - p5(n) = p5(n-1) + GxRho*0.25*dz + do i=is,ie + intz(1) = dpa(i,j) ; intz(5) = dpa(i,j+1) + ! Use Boole's rule to estimate the pressure anomaly change. + do m=2,4 + pos = i*15+(m-2)*5 + if (use_rho_ref) then + intz(m) = G_e*dz_y(m,i)*( C1_90*(7.0*(r15(pos+1)+r15(pos+5)) + & + 32.0*(r15(pos+2)+r15(pos+4)) + & + 12.0*r15(pos+3))) + else + intz(m) = G_e*dz_y(m,i)*( C1_90*(7.0*(r15(pos+1)+r15(pos+5)) + & + 32.0*(r15(pos+2)+r15(pos+4)) + & + 12.0*r15(pos+3)) - rho_ref ) + endif enddo - if (use_rho_ref) then - call calculate_density(T5, S5, p5, r5, EOS, rho_ref=rho_ref) - ! Use Boole's rule to estimate the pressure anomaly change. - intz(m) = G_e*dz*( C1_90*(7.0*(r5(1)+r5(5)) + 32.0*(r5(2)+r5(4)) + 12.0*r5(3))) - else - call calculate_density(T5, S5, p5, r5, EOS) - ! Use Boole's rule to estimate the pressure anomaly change. - intz(m) = G_e*dz*( C1_90*(7.0*(r5(1)+r5(5)) + 32.0*(r5(2)+r5(4)) + 12.0*r5(3)) - rho_ref ) - endif - + ! Use Boole's rule to integrate the values. + inty_dpa(i,j) = C1_90*(7.0*(intz(1)+intz(5)) + 32.0*(intz(2)+intz(4)) + & + 12.0*intz(3)) enddo - ! Use Boole's rule to integrate the values. - inty_dpa(i,j) = C1_90*(7.0*(intz(1)+intz(5)) + 32.0*(intz(2)+intz(4)) + & - 12.0*intz(3)) - enddo ; enddo ; endif + enddo ; endif end subroutine int_density_dz_generic_pcm @@ -414,10 +470,9 @@ subroutine int_density_dz_generic_plm(k, tv, T_t, T_b, S_t, S_b, e, rho_ref, & logical :: use_rho_ref ! Pass rho_ref to the equation of state for more accurate calculation ! of density anomalies. logical :: use_varT, use_varS, use_covarTS ! Logicals for SGS variances fields - integer, dimension(2) :: EOSdom_q5 ! The 5-point q-point i-computational domain for the equation of state + integer, dimension(2) :: EOSdom_h5 ! The 5-point h-point i-computational domain for the equation of state integer, dimension(2) :: EOSdom_q15 ! The 3x5-point q-point i-computational domain for the equation of state integer, dimension(2) :: EOSdom_h15 ! The 3x5-point h-point i-computational domain for the equation of state - integer :: Isq, Ieq, Jsq, Jeq, i, j, m, n, pos Isq = HI%IscB ; Ieq = HI%IecB ; Jsq = HI%JscB ; Jeq = HI%JecB @@ -456,8 +511,8 @@ subroutine int_density_dz_generic_plm(k, tv, T_t, T_b, S_t, S_b, e, rho_ref, & enddo ! Set the loop ranges for equation of state calculations at various points. - EOSdom_q5(1) = 1 ; EOSdom_q5(2) = (ieq-isq+2)*5 - EOSdom_q15(1) = 1 ; EOSdom_q15(2) = 15*(ieq-isq+1) + EOSdom_h5(1) = 1 ; EOSdom_h5(2) = 5*(Ieq-Isq+2) + EOSdom_q15(1) = 1 ; EOSdom_q15(2) = 15*(Ieq-Isq+1) EOSdom_h15(1) = 1 ; EOSdom_h15(2) = 15*(HI%iec-HI%isc+1) ! 1. Compute vertical integrals @@ -475,12 +530,12 @@ subroutine int_density_dz_generic_plm(k, tv, T_t, T_b, S_t, S_b, e, rho_ref, & if (use_varS) S25(i*5+1:i*5+5) = tv%varS(i,j,k) enddo if (use_Stanley_eos) then - call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, EOSdom_q5, rho_ref=rho_ref) + call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, EOSdom_h5, rho_ref=rho_ref) else if (use_rho_ref) then - call calculate_density(T5, S5, p5, r5, EOS, EOSdom_q5, rho_ref=rho_ref) + call calculate_density(T5, S5, p5, r5, EOS, EOSdom_h5, rho_ref=rho_ref) else - call calculate_density(T5, S5, p5, r5, EOS, EOSdom_q5) + call calculate_density(T5, S5, p5, r5, EOS, EOSdom_h5) u5(:) = r5(:) - rho_ref endif endif @@ -491,8 +546,8 @@ subroutine int_density_dz_generic_plm(k, tv, T_t, T_b, S_t, S_b, e, rho_ref, & rho_anom = C1_90*(7.0*(r5(i*5+1)+r5(i*5+5)) + 32.0*(r5(i*5+2)+r5(i*5+4)) + 12.0*r5(i*5+3)) dpa(i,j) = G_e*dz(i)*rho_anom if (present(intz_dpa)) then - ! Use a Boole's-rule-like fifth-order accurate estimate of - ! the double integral of the pressure anomaly. + ! Use a Boole's-rule-like fifth-order accurate estimate of + ! the double integral of the pressure anomaly. intz_dpa(i,j) = 0.5*G_e*dz(i)**2 * & (rho_anom - C1_90*(16.0*(r5(i*5+4)-r5(i*5+2)) + 7.0*(r5(i*5+5)-r5(i*5+1))) ) endif @@ -504,8 +559,8 @@ subroutine int_density_dz_generic_plm(k, tv, T_t, T_b, S_t, S_b, e, rho_ref, & - rho_ref dpa(i,j) = G_e*dz(i)*rho_anom if (present(intz_dpa)) then - ! Use a Boole's-rule-like fifth-order accurate estimate of - ! the double integral of the pressure anomaly. + ! Use a Boole's-rule-like fifth-order accurate estimate of + ! the double integral of the pressure anomaly. intz_dpa(i,j) = 0.5*G_e*dz(i)**2 * & (rho_anom - C1_90*(16.0*(u5(i*5+4)-u5(i*5+2)) + 7.0*(u5(i*5+5)-u5(i*5+1))) ) endif @@ -774,13 +829,26 @@ subroutine int_density_dz_generic_ppm(k, tv, T_t, T_b, S_t, S_b, e, & ! a parabolic interpolation is used to compute intermediate values. ! Local variables - real :: T5(5) ! Temperatures along a line of subgrid locations [C ~> degC] - real :: S5(5) ! Salinities along a line of subgrid locations [S ~> ppt] - real :: T25(5) ! SGS temperature variance along a line of subgrid locations [C2 ~> degC2] - real :: TS5(5) ! SGS temperature-salinity covariance along a line of subgrid locations [C S ~> degC ppt] - real :: S25(5) ! SGS salinity variance along a line of subgrid locations [S2 ~> ppt2] - real :: p5(5) ! Pressures at five quadrature points [R L2 T-2 ~> Pa] - real :: r5(5) ! Density anomalies from rho_ref at quadrature points [R ~> kg m-3] + real :: T5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Temperatures along a line of subgrid locations [C ~> degC] + real :: S5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Salinities along a line of subgrid locations [S ~> ppt] + real :: T25((5*HI%iscB+1):(5*(HI%iecB+2))) ! SGS temperature variance along a line of subgrid + ! locations [C2 ~> degC2] + real :: TS5((5*HI%iscB+1):(5*(HI%iecB+2))) ! SGS temp-salt covariance along a line of subgrid + ! locations [C S ~> degC ppt] + real :: S25((5*HI%iscB+1):(5*(HI%iecB+2))) ! SGS salinity variance along a line of subgrid locations [S2 ~> ppt2] + real :: p5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Pressures along a line of subgrid locations [R L2 T-2 ~> Pa] + real :: r5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Densities anomalies along a line of subgrid + ! locations [R ~> kg m-3] + real :: T15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Temperatures at an array of subgrid locations [C ~> degC] + real :: S15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Salinities at an array of subgrid locations [S ~> ppt] + real :: T215((15*HI%iscB+1):(15*(HI%iecB+1))) ! SGS temperature variance along a line of subgrid + ! locations [C2 ~> degC2] + real :: TS15((15*HI%iscB+1):(15*(HI%iecB+1))) ! SGS temp-salt covariance along a line of subgrid + ! locations [C S ~> degC ppt] + real :: S215((15*HI%iscB+1):(15*(HI%iecB+1))) ! SGS salinity variance along a line of subgrid + ! locations [S2 ~> ppt2] + real :: p15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Pressures at an array of subgrid locations [R L2 T-2 ~> Pa] + real :: r15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Densities at an array of subgrid locations [R ~> kg m-3] real :: wt_t(5), wt_b(5) ! Top and bottom weights [nondim] real :: rho_anom ! The integrated density anomaly [R ~> kg m-3] real :: w_left, w_right ! Left and right weights [nondim] @@ -790,6 +858,8 @@ subroutine int_density_dz_generic_ppm(k, tv, T_t, T_b, S_t, S_b, e, & real :: GxRho ! The gravitational acceleration times density [R L2 Z-1 T-2 ~> kg m-2 s-2] real :: I_Rho ! The inverse of the Boussinesq density [R-1 ~> m3 kg-1] real :: dz ! Layer thicknesses at tracer points [Z ~> m] + real :: dz_x(5,HI%iscB:HI%iecB) ! Layer thicknesses along an x-line of subgrid locations [Z ~> m] + real :: dz_y(5,HI%isc:HI%iec) ! Layer thicknesses along a y-line of subgrid locations [Z ~> m] real :: massWeightToggle ! A non-dimensional toggle factor (0 or 1) [nondim] real :: Ttl, Tbl, Tml, Ttr, Tbr, Tmr ! Temperatures at the velocity cell corners [C ~> degC] real :: Stl, Sbl, Sml, Str, Sbr, Smr ! Salinities at the velocity cell corners [S ~> ppt] @@ -801,9 +871,12 @@ subroutine int_density_dz_generic_ppm(k, tv, T_t, T_b, S_t, S_b, e, & real :: hWght ! A topographically limited thickness weight [Z ~> m] real :: hL, hR ! Thicknesses to the left and right [Z ~> m] real :: iDenom ! The denominator of the thickness weight expressions [Z-2 ~> m-2] - integer :: Isq, Ieq, Jsq, Jeq, i, j, m, n + integer, dimension(2) :: EOSdom_h5 ! The 5-point h-point i-computational domain for the equation of state + integer, dimension(2) :: EOSdom_q15 ! The 3x5-point q-point i-computational domain for the equation of state + integer, dimension(2) :: EOSdom_h15 ! The 3x5-point h-point i-computational domain for the equation of state + integer :: Isq, Ieq, Jsq, Jeq, i, j, m, n, pos logical :: use_PPM ! If false, assume zero curvature in reconstruction, i.e. PLM - logical :: use_varT, use_varS, use_covarTS + logical :: use_varT, use_varS, use_covarTS ! Logicals for SGS variances fields Isq = HI%IscB ; Ieq = HI%IecB ; Jsq = HI%JscB ; Jeq = HI%JecB @@ -824,226 +897,277 @@ subroutine int_density_dz_generic_ppm(k, tv, T_t, T_b, S_t, S_b, e, & use_covarTS = .false. use_varS = .false. if (use_stanley_eos) then - use_varT = associated(tv%varT) - use_covarTS = associated(tv%covarTS) - use_varS = associated(tv%varS) + use_varT = associated(tv%varT) + use_covarTS = associated(tv%covarTS) + use_varS = associated(tv%varS) endif T25(:) = 0. TS5(:) = 0. S25(:) = 0. + T215(:) = 0. + TS15(:) = 0. + S215(:) = 0. do n = 1, 5 wt_t(n) = 0.25 * real(5-n) wt_b(n) = 1.0 - wt_t(n) enddo + ! Set the loop ranges for equation of state calculations at various points. + EOSdom_h5(1) = 1 ; EOSdom_h5(2) = 5*(Ieq-Isq+2) + EOSdom_q15(1) = 1 ; EOSdom_q15(2) = 15*(Ieq-Isq+1) + EOSdom_h15(1) = 1 ; EOSdom_h15(2) = 15*(HI%iec-HI%isc+1) + ! 1. Compute vertical integrals - do j=Jsq,Jeq+1 ; do i=Isq,Ieq+1 - if (use_PPM) then - ! Curvature coefficient of the parabolas - s6 = 3.0 * ( 2.0*tv%S(i,j,k) - ( S_t(i,j,k) + S_b(i,j,k) ) ) - t6 = 3.0 * ( 2.0*tv%T(i,j,k) - ( T_t(i,j,k) + T_b(i,j,k) ) ) - endif - dz = e(i,j,K) - e(i,j,K+1) - do n=1,5 - p5(n) = -GxRho*((e(i,j,K) - z0pres) - 0.25*real(n-1)*dz) - ! Salinity and temperature points are reconstructed with PPM - S5(n) = wt_t(n) * S_t(i,j,k) + wt_b(n) * ( S_b(i,j,k) + s6 * wt_t(n) ) - T5(n) = wt_t(n) * T_t(i,j,k) + wt_b(n) * ( T_b(i,j,k) + t6 * wt_t(n) ) + do j=Jsq,Jeq+1 + do i=Isq,Ieq+1 + if (use_PPM) then + ! Curvature coefficient of the parabolas + s6 = 3.0 * ( 2.0*tv%S(i,j,k) - ( S_t(i,j,k) + S_b(i,j,k) ) ) + t6 = 3.0 * ( 2.0*tv%T(i,j,k) - ( T_t(i,j,k) + T_b(i,j,k) ) ) + endif + dz = e(i,j,K) - e(i,j,K+1) + do n=1,5 + p5(I*5+n) = -GxRho*((e(i,j,K) - z0pres) - 0.25*real(n-1)*dz) + ! Salinity and temperature points are reconstructed with PPM + S5(I*5+n) = wt_t(n) * S_t(i,j,k) + wt_b(n) * ( S_b(i,j,k) + s6 * wt_t(n) ) + T5(I*5+n) = wt_t(n) * T_t(i,j,k) + wt_b(n) * ( T_b(i,j,k) + t6 * wt_t(n) ) + enddo + if (use_stanley_eos) then + if (use_varT) T25(I*5+1:I*5+5) = tv%varT(i,j,k) + if (use_covarTS) TS5(I*5+1:I*5+5) = tv%covarTS(i,j,k) + if (use_varS) S25(I*5+1:I*5+5) = tv%varS(i,j,k) + endif enddo + if (use_stanley_eos) then - if (use_varT) T25(:) = tv%varT(i,j,k) - if (use_covarTS) TS5(:) = tv%covarTS(i,j,k) - if (use_varS) S25(:) = tv%varS(i,j,k) - call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, rho_ref=rho_ref) + call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, EOSdom_h5, rho_ref=rho_ref) else - call calculate_density(T5, S5, p5, r5, EOS, rho_ref=rho_ref) + call calculate_density(T5, S5, p5, r5, EOS, EOSdom_h5, rho_ref=rho_ref) endif - ! Use Boole's rule to estimate the pressure anomaly change. - rho_anom = C1_90*(7.0*(r5(1)+r5(5)) + 32.0*(r5(2)+r5(4)) + 12.0*r5(3)) - dpa(i,j) = G_e*dz*rho_anom - if (present(intz_dpa)) then - ! Use a Boole's-rule-like fifth-order accurate estimate of - ! the double integral of the pressure anomaly. - intz_dpa(i,j) = 0.5*G_e*dz**2 * & - (rho_anom - C1_90*(16.0*(r5(4)-r5(2)) + 7.0*(r5(5)-r5(1))) ) - endif - enddo ; enddo ! end loops on j and i + do i=Isq,Ieq+1 + dz = e(i,j,K) - e(i,j,K+1) + ! Use Boole's rule to estimate the pressure anomaly change. + rho_anom = C1_90*(7.0*(r5(i*5+1)+r5(i*5+5)) + 32.0*(r5(i*5+2)+r5(i*5+4)) + 12.0*r5(i*5+3)) + dpa(i,j) = G_e*dz*rho_anom + if (present(intz_dpa)) then + ! Use a Boole's-rule-like fifth-order accurate estimate of + ! the double integral of the pressure anomaly. + intz_dpa(i,j) = 0.5*G_e*dz**2 * & + (rho_anom - C1_90*(16.0*(r5(i*5+4)-r5(i*5+2)) + 7.0*(r5(i*5+5)-r5(i*5+1))) ) + endif + enddo ! end loop on i + enddo ! end loop on j ! 2. Compute horizontal integrals in the x direction - if (present(intx_dpa)) then ; do j=HI%jsc,HI%jec ; do I=Isq,Ieq - ! Corner values of T and S - ! hWght is the distance measure by which the cell is violation of - ! hydrostatic consistency. For large hWght we bias the interpolation - ! of T,S along the top and bottom integrals, almost like thickness - ! weighting. - ! Note: To work in terrain following coordinates we could offset - ! this distance by the layer thickness to replicate other models. - hWght = massWeightToggle * & - max(0., -bathyT(i,j)-e(i+1,j,K), -bathyT(i+1,j)-e(i,j,K)) - if (hWght > 0.) then - hL = (e(i,j,K) - e(i,j,K+1)) + dz_subroundoff - hR = (e(i+1,j,K) - e(i+1,j,K+1)) + dz_subroundoff - hWght = hWght * ( (hL-hR)/(hL+hR) )**2 - iDenom = 1./( hWght*(hR + hL) + hL*hR ) - Ttl = ( (hWght*hR)*T_t(i+1,j,k) + (hWght*hL + hR*hL)*T_t(i,j,k) ) * iDenom - Tbl = ( (hWght*hR)*T_b(i+1,j,k) + (hWght*hL + hR*hL)*T_b(i,j,k) ) * iDenom - Tml = ( (hWght*hR)*tv%T(i+1,j,k)+ (hWght*hL + hR*hL)*tv%T(i,j,k) ) * iDenom - Ttr = ( (hWght*hL)*T_t(i,j,k) + (hWght*hR + hR*hL)*T_t(i+1,j,k) ) * iDenom - Tbr = ( (hWght*hL)*T_b(i,j,k) + (hWght*hR + hR*hL)*T_b(i+1,j,k) ) * iDenom - Tmr = ( (hWght*hL)*tv%T(i,j,k) + (hWght*hR + hR*hL)*tv%T(i+1,j,k) ) * iDenom - Stl = ( (hWght*hR)*S_t(i+1,j,k) + (hWght*hL + hR*hL)*S_t(i,j,k) ) * iDenom - Sbl = ( (hWght*hR)*S_b(i+1,j,k) + (hWght*hL + hR*hL)*S_b(i,j,k) ) * iDenom - Sml = ( (hWght*hR)*tv%S(i+1,j,k) + (hWght*hL + hR*hL)*tv%S(i,j,k) ) * iDenom - Str = ( (hWght*hL)*S_t(i,j,k) + (hWght*hR + hR*hL)*S_t(i+1,j,k) ) * iDenom - Sbr = ( (hWght*hL)*S_b(i,j,k) + (hWght*hR + hR*hL)*S_b(i+1,j,k) ) * iDenom - Smr = ( (hWght*hL)*tv%S(i,j,k) + (hWght*hR + hR*hL)*tv%S(i+1,j,k) ) * iDenom - else - Ttl = T_t(i,j,k); Tbl = T_b(i,j,k); Ttr = T_t(i+1,j,k); Tbr = T_b(i+1,j,k) - Tml = tv%T(i,j,k); Tmr = tv%T(i+1,j,k) - Stl = S_t(i,j,k); Sbl = S_b(i,j,k); Str = S_t(i+1,j,k); Sbr = S_b(i+1,j,k) - Sml = tv%S(i,j,k); Smr = tv%S(i+1,j,k) - endif - - do m=2,4 - w_left = wt_t(m) ; w_right = wt_b(m) - - ! Salinity and temperature points are linearly interpolated in - ! the horizontal. The subscript (1) refers to the top value in - ! the vertical profile while subscript (5) refers to the bottom - ! value in the vertical profile. - T_top = w_left*Ttl + w_right*Ttr - T_mn = w_left*Tml + w_right*Tmr - T_bot = w_left*Tbl + w_right*Tbr - - S_top = w_left*Stl + w_right*Str - S_mn = w_left*Sml + w_right*Smr - S_bot = w_left*Sbl + w_right*Sbr - - ! Pressure - dz = w_left*(e(i,j,K) - e(i,j,K+1)) + w_right*(e(i+1,j,K) - e(i+1,j,K+1)) - p5(1) = -GxRho*((w_left*e(i,j,K) + w_right*e(i+1,j,K)) - z0pres) - do n=2,5 - p5(n) = p5(n-1) + GxRho*0.25*dz - enddo - - ! Parabolic reconstructions in the vertical for T and S - if (use_PPM) then - ! Coefficients of the parabolas - s6 = 3.0 * ( 2.0*S_mn - ( S_top + S_bot ) ) - t6 = 3.0 * ( 2.0*T_mn - ( T_top + T_bot ) ) - endif - do n=1,5 - S5(n) = wt_t(n) * S_top + wt_b(n) * ( S_bot + s6 * wt_t(n) ) - T5(n) = wt_t(n) * T_top + wt_b(n) * ( T_bot + t6 * wt_t(n) ) - enddo - if (use_stanley_eos) then - if (use_varT) T25(:) = w_left*tv%varT(i,j,k) + w_right*tv%varT(i+1,j,k) - if (use_covarTS) TS5(:) = w_left*tv%covarTS(i,j,k) + w_right*tv%covarTS(i+1,j,k) - if (use_varS) S25(:) = w_left*tv%varS(i,j,k) + w_right*tv%varS(i+1,j,k) - call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, rho_ref=rho_ref) + if (present(intx_dpa)) then ; do j=HI%jsc,HI%jec + do I=Isq,Ieq + ! Corner values of T and S + ! hWght is the distance measure by which the cell is violation of + ! hydrostatic consistency. For large hWght we bias the interpolation + ! of T,S along the top and bottom integrals, almost like thickness + ! weighting. + ! Note: To work in terrain following coordinates we could offset + ! this distance by the layer thickness to replicate other models. + hWght = massWeightToggle * & + max(0., -bathyT(i,j)-e(i+1,j,K), -bathyT(i+1,j)-e(i,j,K)) + if (hWght > 0.) then + hL = (e(i,j,K) - e(i,j,K+1)) + dz_subroundoff + hR = (e(i+1,j,K) - e(i+1,j,K+1)) + dz_subroundoff + hWght = hWght * ( (hL-hR)/(hL+hR) )**2 + iDenom = 1./( hWght*(hR + hL) + hL*hR ) + Ttl = ( (hWght*hR)*T_t(i+1,j,k) + (hWght*hL + hR*hL)*T_t(i,j,k) ) * iDenom + Tbl = ( (hWght*hR)*T_b(i+1,j,k) + (hWght*hL + hR*hL)*T_b(i,j,k) ) * iDenom + Tml = ( (hWght*hR)*tv%T(i+1,j,k)+ (hWght*hL + hR*hL)*tv%T(i,j,k) ) * iDenom + Ttr = ( (hWght*hL)*T_t(i,j,k) + (hWght*hR + hR*hL)*T_t(i+1,j,k) ) * iDenom + Tbr = ( (hWght*hL)*T_b(i,j,k) + (hWght*hR + hR*hL)*T_b(i+1,j,k) ) * iDenom + Tmr = ( (hWght*hL)*tv%T(i,j,k) + (hWght*hR + hR*hL)*tv%T(i+1,j,k) ) * iDenom + Stl = ( (hWght*hR)*S_t(i+1,j,k) + (hWght*hL + hR*hL)*S_t(i,j,k) ) * iDenom + Sbl = ( (hWght*hR)*S_b(i+1,j,k) + (hWght*hL + hR*hL)*S_b(i,j,k) ) * iDenom + Sml = ( (hWght*hR)*tv%S(i+1,j,k) + (hWght*hL + hR*hL)*tv%S(i,j,k) ) * iDenom + Str = ( (hWght*hL)*S_t(i,j,k) + (hWght*hR + hR*hL)*S_t(i+1,j,k) ) * iDenom + Sbr = ( (hWght*hL)*S_b(i,j,k) + (hWght*hR + hR*hL)*S_b(i+1,j,k) ) * iDenom + Smr = ( (hWght*hL)*tv%S(i,j,k) + (hWght*hR + hR*hL)*tv%S(i+1,j,k) ) * iDenom else - call calculate_density(T5, S5, p5, r5, EOS, rho_ref=rho_ref) + Ttl = T_t(i,j,k); Tbl = T_b(i,j,k); Ttr = T_t(i+1,j,k); Tbr = T_b(i+1,j,k) + Tml = tv%T(i,j,k); Tmr = tv%T(i+1,j,k) + Stl = S_t(i,j,k); Sbl = S_b(i,j,k); Str = S_t(i+1,j,k); Sbr = S_b(i+1,j,k) + Sml = tv%S(i,j,k); Smr = tv%S(i+1,j,k) endif - ! Use Boole's rule to estimate the pressure anomaly change. - intz(m) = G_e*dz*( C1_90*(7.0*(r5(1)+r5(5)) + 32.0*(r5(2)+r5(4)) + 12.0*r5(3)) ) - enddo ! m - intz(1) = dpa(i,j) ; intz(5) = dpa(i+1,j) + do m=2,4 + w_left = wt_t(m) ; w_right = wt_b(m) - ! Use Boole's rule to integrate the bottom pressure anomaly values in x. - intx_dpa(I,j) = C1_90*(7.0*(intz(1)+intz(5)) + 32.0*(intz(2)+intz(4)) + 12.0*intz(3)) + ! Salinity and temperature points are linearly interpolated in + ! the horizontal. The subscript (1) refers to the top value in + ! the vertical profile while subscript (5) refers to the bottom + ! value in the vertical profile. + T_top = w_left*Ttl + w_right*Ttr + T_mn = w_left*Tml + w_right*Tmr + T_bot = w_left*Tbl + w_right*Tbr - enddo ; enddo ; endif + S_top = w_left*Stl + w_right*Str + S_mn = w_left*Sml + w_right*Smr + S_bot = w_left*Sbl + w_right*Sbr - ! 3. Compute horizontal integrals in the y direction - if (present(inty_dpa)) then ; do J=Jsq,Jeq ; do i=HI%isc,HI%iec - ! Corner values of T and S - ! hWght is the distance measure by which the cell is violation of - ! hydrostatic consistency. For large hWght we bias the interpolation - ! of T,S along the top and bottom integrals, almost like thickness - ! weighting. - ! Note: To work in terrain following coordinates we could offset - ! this distance by the layer thickness to replicate other models. - hWght = massWeightToggle * & - max(0., -bathyT(i,j)-e(i,j+1,K), -bathyT(i,j+1)-e(i,j,K)) - if (hWght > 0.) then - hL = (e(i,j,K) - e(i,j,K+1)) + dz_subroundoff - hR = (e(i,j+1,K) - e(i,j+1,K+1)) + dz_subroundoff - hWght = hWght * ( (hL-hR)/(hL+hR) )**2 - iDenom = 1./( hWght*(hR + hL) + hL*hR ) - Ttl = ( (hWght*hR)*T_t(i,j+1,k) + (hWght*hL + hR*hL)*T_t(i,j,k) ) * iDenom - Tbl = ( (hWght*hR)*T_b(i,j+1,k) + (hWght*hL + hR*hL)*T_b(i,j,k) ) * iDenom - Tml = ( (hWght*hR)*tv%T(i,j+1,k)+ (hWght*hL + hR*hL)*tv%T(i,j,k) ) * iDenom - Ttr = ( (hWght*hL)*T_t(i,j,k) + (hWght*hR + hR*hL)*T_t(i,j+1,k) ) * iDenom - Tbr = ( (hWght*hL)*T_b(i,j,k) + (hWght*hR + hR*hL)*T_b(i,j+1,k) ) * iDenom - Tmr = ( (hWght*hL)*tv%T(i,j,k) + (hWght*hR + hR*hL)*tv%T(i,j+1,k) ) * iDenom - Stl = ( (hWght*hR)*S_t(i,j+1,k) + (hWght*hL + hR*hL)*S_t(i,j,k) ) * iDenom - Sbl = ( (hWght*hR)*S_b(i,j+1,k) + (hWght*hL + hR*hL)*S_b(i,j,k) ) * iDenom - Sml = ( (hWght*hR)*tv%S(i,j+1,k)+ (hWght*hL + hR*hL)*tv%S(i,j,k) ) * iDenom - Str = ( (hWght*hL)*S_t(i,j,k) + (hWght*hR + hR*hL)*S_t(i,j+1,k) ) * iDenom - Sbr = ( (hWght*hL)*S_b(i,j,k) + (hWght*hR + hR*hL)*S_b(i,j+1,k) ) * iDenom - Smr = ( (hWght*hL)*tv%S(i,j,k) + (hWght*hR + hR*hL)*tv%S(i,j+1,k) ) * iDenom + ! Pressure + dz_x(m,i) = w_left*(e(i,j,K) - e(i,j,K+1)) + w_right*(e(i+1,j,K) - e(i+1,j,K+1)) + + pos = i*15+(m-2)*5 + p15(pos+1) = -GxRho*((w_left*e(i,j,K) + w_right*e(i+1,j,K)) - z0pres) + do n=2,5 + p15(pos+n) = p15(pos+n-1) + GxRho*0.25*dz_x(m,i) + enddo + + ! Parabolic reconstructions in the vertical for T and S + if (use_PPM) then + ! Coefficients of the parabolas + s6 = 3.0 * ( 2.0*S_mn - ( S_top + S_bot ) ) + t6 = 3.0 * ( 2.0*T_mn - ( T_top + T_bot ) ) + endif + do n=1,5 + S15(pos+n) = wt_t(n) * S_top + wt_b(n) * ( S_bot + s6 * wt_t(n) ) + T15(pos+n) = wt_t(n) * T_top + wt_b(n) * ( T_bot + t6 * wt_t(n) ) + enddo + if (use_stanley_eos) then + if (use_varT) T215(pos+1:pos+5) = w_left*tv%varT(i,j,k) + w_right*tv%varT(i+1,j,k) + if (use_covarTS) TS15(pos+1:pos+5) = w_left*tv%covarTS(i,j,k) + w_right*tv%covarTS(i+1,j,k) + if (use_varS) S215(pos+1:pos+5) = w_left*tv%varS(i,j,k) + w_right*tv%varS(i+1,j,k) + endif + if (use_stanley_eos) then + call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, rho_ref=rho_ref) + else + call calculate_density(T5, S5, p5, r5, EOS, rho_ref=rho_ref) + endif + enddo + enddo + + if (use_stanley_eos) then + call calculate_density(T15, S15, p15, T215, TS15, S215, r15, EOS, EOSdom_q15, rho_ref=rho_ref) else - Ttl = T_t(i,j,k); Tbl = T_b(i,j,k); Ttr = T_t(i,j+1,k); Tbr = T_b(i,j+1,k) - Tml = tv%T(i,j,k); Tmr = tv%T(i,j+1,k) - Stl = S_t(i,j,k); Sbl = S_b(i,j,k); Str = S_t(i,j+1,k); Sbr = S_b(i,j+1,k) - Sml = tv%S(i,j,k); Smr = tv%S(i,j+1,k) + call calculate_density(T15, S15, p15, r15, EOS, EOSdom_q15, rho_ref=rho_ref) endif - do m=2,4 - w_left = wt_t(m) ; w_right = wt_b(m) - - ! Salinity and temperature points are linearly interpolated in - ! the horizontal. The subscript (1) refers to the top value in - ! the vertical profile while subscript (5) refers to the bottom - ! value in the vertical profile. - T_top = w_left*Ttl + w_right*Ttr - T_mn = w_left*Tml + w_right*Tmr - T_bot = w_left*Tbl + w_right*Tbr - - S_top = w_left*Stl + w_right*Str - S_mn = w_left*Sml + w_right*Smr - S_bot = w_left*Sbl + w_right*Sbr - - ! Pressure - dz = w_left*(e(i,j,K) - e(i,j,K+1)) + w_right*(e(i,j+1,K) - e(i,j+1,K+1)) - p5(1) = -GxRho*((w_left*e(i,j,K) + w_right*e(i,j+1,K)) - z0pres) - do n=2,5 - p5(n) = p5(n-1) + GxRho*0.25*dz - enddo + do I=Isq,Ieq + do m=2,4 + pos = i*15+(m-2)*5 + ! Use Boole's rule to estimate the pressure anomaly change. + intz(m) = G_e*dz_x(m,i)*( C1_90*( 7.0*(r15(pos+1)+r15(pos+5)) + & + 32.0*(r15(pos+2)+r15(pos+4)) + & + 12.0*r15(pos+3)) ) + enddo ! m + intz(1) = dpa(i,j) ; intz(5) = dpa(i+1,j) - ! Parabolic reconstructions in the vertical for T and S - if (use_PPM) then - ! Coefficients of the parabolas - s6 = 3.0 * ( 2.0*S_mn - ( S_top + S_bot ) ) - t6 = 3.0 * ( 2.0*T_mn - ( T_top + T_bot ) ) - endif - do n=1,5 - S5(n) = wt_t(n) * S_top + wt_b(n) * ( S_bot + s6 * wt_t(n) ) - T5(n) = wt_t(n) * T_top + wt_b(n) * ( T_bot + t6 * wt_t(n) ) - enddo + ! Use Boole's rule to integrate the bottom pressure anomaly values in x. + intx_dpa(I,j) = C1_90*(7.0*(intz(1)+intz(5)) + 32.0*(intz(2)+intz(4)) + 12.0*intz(3)) - if (use_stanley_eos) then - if (use_varT) T25(:) = w_left*tv%varT(i,j,k) + w_right*tv%varT(i,j+1,k) - if (use_covarTS) TS5(:) = w_left*tv%covarTS(i,j,k) + w_right*tv%covarTS(i,j+1,k) - if (use_varS) S25(:) = w_left*tv%varS(i,j,k) + w_right*tv%varS(i,j+1,k) - call calculate_density(T5, S5, p5, T25, TS5, S25, r5, EOS, rho_ref=rho_ref) + enddo + enddo ; endif + + ! 3. Compute horizontal integrals in the y direction + if (present(inty_dpa)) then ; do J=Jsq,Jeq + do i=HI%isc,HI%iec + ! Corner values of T and S + ! hWght is the distance measure by which the cell is violation of + ! hydrostatic consistency. For large hWght we bias the interpolation + ! of T,S along the top and bottom integrals, almost like thickness + ! weighting. + ! Note: To work in terrain following coordinates we could offset + ! this distance by the layer thickness to replicate other models. + hWght = massWeightToggle * & + max(0., -bathyT(i,j)-e(i,j+1,K), -bathyT(i,j+1)-e(i,j,K)) + if (hWght > 0.) then + hL = (e(i,j,K) - e(i,j,K+1)) + dz_subroundoff + hR = (e(i,j+1,K) - e(i,j+1,K+1)) + dz_subroundoff + hWght = hWght * ( (hL-hR)/(hL+hR) )**2 + iDenom = 1./( hWght*(hR + hL) + hL*hR ) + Ttl = ( (hWght*hR)*T_t(i,j+1,k) + (hWght*hL + hR*hL)*T_t(i,j,k) ) * iDenom + Tbl = ( (hWght*hR)*T_b(i,j+1,k) + (hWght*hL + hR*hL)*T_b(i,j,k) ) * iDenom + Tml = ( (hWght*hR)*tv%T(i,j+1,k)+ (hWght*hL + hR*hL)*tv%T(i,j,k) ) * iDenom + Ttr = ( (hWght*hL)*T_t(i,j,k) + (hWght*hR + hR*hL)*T_t(i,j+1,k) ) * iDenom + Tbr = ( (hWght*hL)*T_b(i,j,k) + (hWght*hR + hR*hL)*T_b(i,j+1,k) ) * iDenom + Tmr = ( (hWght*hL)*tv%T(i,j,k) + (hWght*hR + hR*hL)*tv%T(i,j+1,k) ) * iDenom + Stl = ( (hWght*hR)*S_t(i,j+1,k) + (hWght*hL + hR*hL)*S_t(i,j,k) ) * iDenom + Sbl = ( (hWght*hR)*S_b(i,j+1,k) + (hWght*hL + hR*hL)*S_b(i,j,k) ) * iDenom + Sml = ( (hWght*hR)*tv%S(i,j+1,k)+ (hWght*hL + hR*hL)*tv%S(i,j,k) ) * iDenom + Str = ( (hWght*hL)*S_t(i,j,k) + (hWght*hR + hR*hL)*S_t(i,j+1,k) ) * iDenom + Sbr = ( (hWght*hL)*S_b(i,j,k) + (hWght*hR + hR*hL)*S_b(i,j+1,k) ) * iDenom + Smr = ( (hWght*hL)*tv%S(i,j,k) + (hWght*hR + hR*hL)*tv%S(i,j+1,k) ) * iDenom else - call calculate_density(T5, S5, p5, r5, EOS, rho_ref=rho_ref) + Ttl = T_t(i,j,k); Tbl = T_b(i,j,k); Ttr = T_t(i,j+1,k); Tbr = T_b(i,j+1,k) + Tml = tv%T(i,j,k); Tmr = tv%T(i,j+1,k) + Stl = S_t(i,j,k); Sbl = S_b(i,j,k); Str = S_t(i,j+1,k); Sbr = S_b(i,j+1,k) + Sml = tv%S(i,j,k); Smr = tv%S(i,j+1,k) endif - ! Use Boole's rule to estimate the pressure anomaly change. - intz(m) = G_e*dz*( C1_90*(7.0*(r5(1)+r5(5)) + 32.0*(r5(2)+r5(4)) + 12.0*r5(3)) ) - enddo ! m - intz(1) = dpa(i,j) ; intz(5) = dpa(i,j+1) + do m=2,4 + w_left = wt_t(m) ; w_right = wt_b(m) + + ! Salinity and temperature points are linearly interpolated in + ! the horizontal. The subscript (1) refers to the top value in + ! the vertical profile while subscript (5) refers to the bottom + ! value in the vertical profile. + T_top = w_left*Ttl + w_right*Ttr + T_mn = w_left*Tml + w_right*Tmr + T_bot = w_left*Tbl + w_right*Tbr + + S_top = w_left*Stl + w_right*Str + S_mn = w_left*Sml + w_right*Smr + S_bot = w_left*Sbl + w_right*Sbr + + ! Pressure + dz_y(m,i) = w_left*(e(i,j,K) - e(i,j,K+1)) + w_right*(e(i,j+1,K) - e(i,j+1,K+1)) + + pos = i*15+(m-2)*5 + p15(pos+1) = -GxRho*((w_left*e(i,j,K) + w_right*e(i,j+1,K)) - z0pres) + do n=2,5 + p15(pos+n) = p15(pos+n-1) + GxRho*0.25*dz_y(m,i) + enddo + + ! Parabolic reconstructions in the vertical for T and S + if (use_PPM) then + ! Coefficients of the parabolas + s6 = 3.0 * ( 2.0*S_mn - ( S_top + S_bot ) ) + t6 = 3.0 * ( 2.0*T_mn - ( T_top + T_bot ) ) + endif + do n=1,5 + S15(pos+n) = wt_t(n) * S_top + wt_b(n) * ( S_bot + s6 * wt_t(n) ) + T15(pos+n) = wt_t(n) * T_top + wt_b(n) * ( T_bot + t6 * wt_t(n) ) + enddo + + if (use_stanley_eos) then + if (use_varT) T215(pos+1:pos+5) = w_left*tv%varT(i,j,k) + w_right*tv%varT(i,j+1,k) + if (use_covarTS) TS15(pos+1:pos+5) = w_left*tv%covarTS(i,j,k) + w_right*tv%covarTS(i,j+1,k) + if (use_varS) S215(pos+1:pos+5) = w_left*tv%varS(i,j,k) + w_right*tv%varS(i,j+1,k) + endif + enddo + enddo + + if (use_stanley_eos) then + call calculate_density(T15(15*HI%isc+1:), S15(15*HI%isc+1:), p15(15*HI%isc+1:), & + T215(15*HI%isc+1:), TS15(15*HI%isc+1:), S215(15*HI%isc+1:), & + r15(15*HI%isc+1:), EOS, EOSdom_h15, rho_ref=rho_ref) + else + call calculate_density(T15(15*HI%isc+1:), S15(15*HI%isc+1:), p15(15*HI%isc+1:), & + r15(15*HI%isc+1:), EOS, EOSdom_h15, rho_ref=rho_ref) + endif - ! Use Boole's rule to integrate the bottom pressure anomaly values in y. - inty_dpa(i,J) = C1_90*(7.0*(intz(1)+intz(5)) + 32.0*(intz(2)+intz(4)) + 12.0*intz(3)) + do i=HI%isc,HI%iec + do m=2,4 + ! Use Boole's rule to estimate the pressure anomaly change. + pos = i*15+(m-2)*5 + intz(m) = G_e*dz_y(m,i)*( C1_90*( 7.0*(r15(pos+1)+r15(pos+5)) + & + 32.0*(r15(pos+2)+r15(pos+4)) + & + 12.0*r15(pos+3)) ) + enddo ! m + intz(1) = dpa(i,j) ; intz(5) = dpa(i,j+1) - enddo ; enddo ; endif + ! Use Boole's rule to integrate the bottom pressure anomaly values in y. + inty_dpa(i,J) = C1_90*(7.0*(intz(1)+intz(5)) + 32.0*(intz(2)+intz(4)) + 12.0*intz(3)) + enddo + enddo ; endif end subroutine int_density_dz_generic_ppm @@ -1161,12 +1285,19 @@ subroutine int_spec_vol_dp_generic_pcm(T, S, p_t, p_b, alpha_ref, HI, EOS, US, d ! series for log(1-eps/1+eps) that assumes that |eps| < 0.34. ! Local variables - real :: T5(5) ! Temperatures at five quadrature points [C ~> degC] - real :: S5(5) ! Salinities at five quadrature points [S ~> ppt] - real :: p5(5) ! Pressures at five quadrature points [R L2 T-2 ~> Pa] - real :: a5(5) ! Specific volumes at five quadrature points [R-1 ~> m3 kg-1] + real :: T5((5*HI%isd+1):(5*(HI%ied+2))) ! Temperatures along a line of subgrid locations [C ~> degC] + real :: S5((5*HI%isd+1):(5*(HI%ied+2))) ! Salinities along a line of subgrid locations [S ~> ppt] + real :: p5((5*HI%isd+1):(5*(HI%ied+2))) ! Pressures along a line of subgrid locations [R L2 T-2 ~> Pa] + real :: a5((5*HI%isd+1):(5*(HI%ied+2))) ! Specific volumes anomalies along a line of subgrid + ! locations [R-1 ~> m3 kg-3] + real :: T15((15*HI%isd+1):(15*(HI%ied+1))) ! Temperatures at an array of subgrid locations [C ~> degC] + real :: S15((15*HI%isd+1):(15*(HI%ied+1))) ! Salinities at an array of subgrid locations [S ~> ppt] + real :: p15((15*HI%isd+1):(15*(HI%ied+1))) ! Pressures at an array of subgrid locations [R L2 T-2 ~> Pa] + real :: a15((15*HI%isd+1):(15*(HI%ied+1))) ! Specific volumes at an array of subgrid locations [R ~> kg m-3] real :: alpha_anom ! The depth averaged specific density anomaly [R-1 ~> m3 kg-1] real :: dp ! The pressure change through a layer [R L2 T-2 ~> Pa] + real :: dp_x(5,SZIB_(HI)) ! The pressure change through a layer along an x-line of subgrid locations [Z ~> m] + real :: dp_y(5,SZI_(HI)) ! The pressure change through a layer along a y-line of subgrid locations [Z ~> m] real :: hWght ! A pressure-thickness below topography [R L2 T-2 ~> Pa] real :: hL, hR ! Pressure-thicknesses of the columns to the left and right [R L2 T-2 ~> Pa] real :: iDenom ! The inverse of the denominator in the weights [T4 R-2 L-4 ~> Pa-2] @@ -1178,7 +1309,10 @@ subroutine int_spec_vol_dp_generic_pcm(T, S, p_t, p_b, alpha_ref, HI, EOS, US, d ! 5 sub-column locations [L2 T-2 ~> m2 s-2] logical :: do_massWeight ! Indicates whether to do mass weighting. real, parameter :: C1_90 = 1.0/90.0 ! A rational constant [nondim] - integer :: Isq, Ieq, Jsq, Jeq, ish, ieh, jsh, jeh, i, j, m, n, halo + integer, dimension(2) :: EOSdom_h5 ! The 5-point h-point i-computational domain for the equation of state + integer, dimension(2) :: EOSdom_q15 ! The 3x5-point q-point i-computational domain for the equation of state + integer, dimension(2) :: EOSdom_h15 ! The 3x5-point h-point i-computational domain for the equation of state + integer :: Isq, Ieq, Jsq, Jeq, ish, ieh, jsh, jeh, i, j, m, n, pos, halo Isq = HI%IscB ; Ieq = HI%IecB ; Jsq = HI%JscB ; Jeq = HI%JecB halo = 0 ; if (present(halo_size)) halo = MAX(halo_size,0) @@ -1195,110 +1329,146 @@ subroutine int_spec_vol_dp_generic_pcm(T, S, p_t, p_b, alpha_ref, HI, EOS, US, d "dP_neglect must be present if useMassWghtInterp is present and true.") endif ; endif - do j=jsh,jeh ; do i=ish,ieh - dp = p_b(i,j) - p_t(i,j) - do n=1,5 - T5(n) = T(i,j) ; S5(n) = S(i,j) - p5(n) = p_b(i,j) - 0.25*real(n-1)*dp + ! Set the loop ranges for equation of state calculations at various points. + EOSdom_h5(1) = 1 ; EOSdom_h5(2) = 5*(ieh-ish+1) + EOSdom_q15(1) = 1 ; EOSdom_q15(2) = 15*(Ieq-Isq+1) + EOSdom_h15(1) = 1 ; EOSdom_h15(2) = 15*(HI%iec-HI%isc+1) + + do j=jsh,jeh + do i=ish,ieh + dp = p_b(i,j) - p_t(i,j) + pos = 5*i + do n=1,5 + T5(pos+n) = T(i,j) ; S5(pos+n) = S(i,j) + p5(pos+n) = p_b(i,j) - 0.25*real(n-1)*dp + enddo enddo - call calculate_spec_vol(T5, S5, p5, a5, EOS, spv_ref=alpha_ref) + call calculate_spec_vol(T5(5*ish+1:), S5(5*ish+1:), p5(5*ish+1:), a5(5*ish+1:), EOS, & + EOSdom_h5, spv_ref=alpha_ref) - ! Use Boole's rule to estimate the interface height anomaly change. - alpha_anom = C1_90*(7.0*(a5(1)+a5(5)) + 32.0*(a5(2)+a5(4)) + 12.0*a5(3)) - dza(i,j) = dp*alpha_anom - ! Use a Boole's-rule-like fifth-order accurate estimate of the double integral of - ! the interface height anomaly. - if (present(intp_dza)) intp_dza(i,j) = 0.5*dp**2 * & - (alpha_anom - C1_90*(16.0*(a5(4)-a5(2)) + 7.0*(a5(5)-a5(1))) ) - enddo ; enddo + do i=ish,ieh + dp = p_b(i,j) - p_t(i,j) + ! Use Boole's rule to estimate the interface height anomaly change. + pos = 5*i + alpha_anom = C1_90*(7.0*(a5(pos+1)+a5(pos+5)) + 32.0*(a5(pos+2)+a5(pos+4)) + 12.0*a5(pos+3)) + dza(i,j) = dp*alpha_anom + ! Use a Boole's-rule-like fifth-order accurate estimate of the double integral of + ! the interface height anomaly. + if (present(intp_dza)) intp_dza(i,j) = 0.5*dp**2 * & + (alpha_anom - C1_90*(16.0*(a5(pos+4)-a5(pos+2)) + 7.0*(a5(pos+5)-a5(pos+1))) ) + enddo + enddo - if (present(intx_dza)) then ; do j=HI%jsc,HI%jec ; do I=Isq,Ieq - ! hWght is the distance measure by which the cell is violation of - ! hydrostatic consistency. For large hWght we bias the interpolation of - ! T & S along the top and bottom integrals, akin to thickness weighting. - hWght = 0.0 - if (do_massWeight) & - hWght = max(0., bathyP(i,j)-p_t(i+1,j), bathyP(i+1,j)-p_t(i,j)) - if (hWght > 0.) then - hL = (p_b(i,j) - p_t(i,j)) + dP_neglect - hR = (p_b(i+1,j) - p_t(i+1,j)) + dP_neglect - hWght = hWght * ( (hL-hR)/(hL+hR) )**2 - iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) - hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom - hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom - else - hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 - endif + if (present(intx_dza)) then ; do j=HI%jsc,HI%jec + do I=Isq,Ieq + ! hWght is the distance measure by which the cell is violation of + ! hydrostatic consistency. For large hWght we bias the interpolation of + ! T & S along the top and bottom integrals, akin to thickness weighting. + hWght = 0.0 + if (do_massWeight) & + hWght = max(0., bathyP(i,j)-p_t(i+1,j), bathyP(i+1,j)-p_t(i,j)) + if (hWght > 0.) then + hL = (p_b(i,j) - p_t(i,j)) + dP_neglect + hR = (p_b(i+1,j) - p_t(i+1,j)) + dP_neglect + hWght = hWght * ( (hL-hR)/(hL+hR) )**2 + iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) + hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom + hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom + else + hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 + endif - intp(1) = dza(i,j) ; intp(5) = dza(i+1,j) - do m=2,4 - wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L - wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR + do m=2,4 + wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L + wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR + pos = i*15+(m-2)*5 - ! T, S, and p are interpolated in the horizontal. The p interpolation - ! is linear, but for T and S it may be thickness weighted. - p5(1) = wt_L*p_b(i,j) + wt_R*p_b(i+1,j) - dp = wt_L*(p_b(i,j) - p_t(i,j)) + wt_R*(p_b(i+1,j) - p_t(i+1,j)) - T5(1) = wtT_L*T(i,j) + wtT_R*T(i+1,j) - S5(1) = wtT_L*S(i,j) + wtT_R*S(i+1,j) + ! T, S, and p are interpolated in the horizontal. The p interpolation + ! is linear, but for T and S it may be thickness weighted. + p15(pos+1) = wt_L*p_b(i,j) + wt_R*p_b(i+1,j) + dp_x(m,I) = wt_L*(p_b(i,j) - p_t(i,j)) + wt_R*(p_b(i+1,j) - p_t(i+1,j)) + T15(pos+1) = wtT_L*T(i,j) + wtT_R*T(i+1,j) + S15(pos+1) = wtT_L*S(i,j) + wtT_R*S(i+1,j) - do n=2,5 - T5(n) = T5(1) ; S5(n) = S5(1) ; p5(n) = p5(n-1) - 0.25*dp + do n=2,5 + T15(pos+n) = T15(pos+1) ; S15(pos+n) = S15(pos+1) + p15(pos+n) = p15(pos+n-1) - 0.25*dp_x(m,I) + enddo enddo - call calculate_spec_vol(T5, S5, p5, a5, EOS, spv_ref=alpha_ref) + enddo + + call calculate_spec_vol(T15(15*Isq+1:), S15(15*Isq+1:), p15(15*Isq+1:), & + a15(15*Isq+1:), EOS, EOSdom_q15, spv_ref=alpha_ref) - ! Use Boole's rule to estimate the interface height anomaly change. - intp(m) = dp*( C1_90*(7.0*(a5(1)+a5(5)) + 32.0*(a5(2)+a5(4)) + & - 12.0*a5(3))) + do I=Isq,Ieq + intp(1) = dza(i,j) ; intp(5) = dza(i+1,j) + ! Use Boole's rule to estimate the interface height anomaly change. + do m=2,4 + pos = i*15+(m-2)*5 + intp(m) = dp_x(m,I)*( C1_90*(7.0*(a15(pos+1)+a15(pos+5)) + 32.0*(a15(pos+2)+a15(pos+4)) + & + 12.0*a15(pos+3))) + enddo + ! Use Boole's rule to integrate the interface height anomaly values in x. + intx_dza(i,j) = C1_90*(7.0*(intp(1)+intp(5)) + 32.0*(intp(2)+intp(4)) + & + 12.0*intp(3)) enddo - ! Use Boole's rule to integrate the interface height anomaly values in x. - intx_dza(i,j) = C1_90*(7.0*(intp(1)+intp(5)) + 32.0*(intp(2)+intp(4)) + & - 12.0*intp(3)) - enddo ; enddo ; endif + enddo ; endif - if (present(inty_dza)) then ; do J=Jsq,Jeq ; do i=HI%isc,HI%iec - ! hWght is the distance measure by which the cell is violation of - ! hydrostatic consistency. For large hWght we bias the interpolation of - ! T & S along the top and bottom integrals, akin to thickness weighting. - hWght = 0.0 - if (do_massWeight) & - hWght = max(0., bathyP(i,j)-p_t(i,j+1), bathyP(i,j+1)-p_t(i,j)) - if (hWght > 0.) then - hL = (p_b(i,j) - p_t(i,j)) + dP_neglect - hR = (p_b(i,j+1) - p_t(i,j+1)) + dP_neglect - hWght = hWght * ( (hL-hR)/(hL+hR) )**2 - iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) - hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom - hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom - else - hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 - endif + if (present(inty_dza)) then ; do J=Jsq,Jeq + do i=HI%isc,HI%iec + ! hWght is the distance measure by which the cell is violation of + ! hydrostatic consistency. For large hWght we bias the interpolation of + ! T & S along the top and bottom integrals, akin to thickness weighting. + hWght = 0.0 + if (do_massWeight) & + hWght = max(0., bathyP(i,j)-p_t(i,j+1), bathyP(i,j+1)-p_t(i,j)) + if (hWght > 0.) then + hL = (p_b(i,j) - p_t(i,j)) + dP_neglect + hR = (p_b(i,j+1) - p_t(i,j+1)) + dP_neglect + hWght = hWght * ( (hL-hR)/(hL+hR) )**2 + iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) + hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom + hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom + else + hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 + endif + + do m=2,4 + wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L + wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR + pos = i*15+(m-2)*5 - intp(1) = dza(i,j) ; intp(5) = dza(i,j+1) - do m=2,4 - wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L - wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR - - ! T, S, and p are interpolated in the horizontal. The p interpolation - ! is linear, but for T and S it may be thickness weighted. - p5(1) = wt_L*p_b(i,j) + wt_R*p_b(i,j+1) - dp = wt_L*(p_b(i,j) - p_t(i,j)) + wt_R*(p_b(i,j+1) - p_t(i,j+1)) - T5(1) = wtT_L*T(i,j) + wtT_R*T(i,j+1) - S5(1) = wtT_L*S(i,j) + wtT_R*S(i,j+1) - do n=2,5 - T5(n) = T5(1) ; S5(n) = S5(1) ; p5(n) = p5(n-1) - 0.25*dp + ! T, S, and p are interpolated in the horizontal. The p interpolation + ! is linear, but for T and S it may be thickness weighted. + p15(pos+1) = wt_L*p_b(i,j) + wt_R*p_b(i,j+1) + dp_y(m,i) = wt_L*(p_b(i,j) - p_t(i,j)) + wt_R*(p_b(i,j+1) - p_t(i,j+1)) + T15(pos+1) = wtT_L*T(i,j) + wtT_R*T(i,j+1) + S15(pos+1) = wtT_L*S(i,j) + wtT_R*S(i,j+1) + do n=2,5 + T15(pos+n) = T15(pos+1) ; S15(pos+n) = S15(pos+1) + p15(pos+n) = p15(pos+n-1) - 0.25*dp_y(m,i) + enddo enddo - call calculate_spec_vol(T5, S5, p5, a5, EOS, spv_ref=alpha_ref) + enddo + + call calculate_spec_vol(T15(15*HI%isc+1:), S15(15*HI%isc+1:), p15(15*HI%isc+1:), & + a15(15*HI%isc+1:), EOS, EOSdom_h15, spv_ref=alpha_ref) + + do i=HI%isc,HI%iec - ! Use Boole's rule to estimate the interface height anomaly change. - intp(m) = dp*( C1_90*(7.0*(a5(1)+a5(5)) + 32.0*(a5(2)+a5(4)) + & - 12.0*a5(3))) + intp(1) = dza(i,j) ; intp(5) = dza(i,j+1) + ! Use Boole's rule to estimate the interface height anomaly change. + do m=2,4 + pos = i*15+(m-2)*5 + intp(m) = dp_y(m,i)*( C1_90*(7.0*(a15(pos+1)+a15(pos+5)) + 32.0*(a15(pos+2)+a15(pos+4)) + & + 12.0*a15(pos+3))) + enddo + ! Use Boole's rule to integrate the interface height anomaly values in y. + inty_dza(i,j) = C1_90*(7.0*(intp(1)+intp(5)) + 32.0*(intp(2)+intp(4)) + & + 12.0*intp(3)) enddo - ! Use Boole's rule to integrate the interface height anomaly values in y. - inty_dza(i,j) = C1_90*(7.0*(intp(1)+intp(5)) + 32.0*(intp(2)+intp(4)) + & - 12.0*intp(3)) - enddo ; enddo ; endif + enddo ; endif end subroutine int_spec_vol_dp_generic_pcm @@ -1358,14 +1528,15 @@ subroutine int_spec_vol_dp_generic_plm(T_t, T_b, S_t, S_b, p_t, p_b, alpha_ref, ! Boole's rule to do the horizontal integrals, and from a truncation in the ! series for log(1-eps/1+eps) that assumes that |eps| < 0.34. - real :: T5(5) ! Temperatures at five quadrature points [C ~> degC] - real :: S5(5) ! Salinities at five quadrature points [S ~> ppt] - real :: p5(5) ! Pressures at five quadrature points [R L2 T-2 ~> Pa] - real :: a5(5) ! Specific volumes at five quadrature points [R-1 ~> m3 kg-1] - real :: T15(15) ! Temperatures at fifteen interior quadrature points [C ~> degC] - real :: S15(15) ! Salinities at fifteen interior quadrature points [S ~> ppt] - real :: p15(15) ! Pressures at fifteen quadrature points [R L2 T-2 ~> Pa] - real :: a15(15) ! Specific volumes at fifteen quadrature points [R-1 ~> m3 kg-1] + real :: T5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Temperatures along a line of subgrid locations [C ~> degC] + real :: S5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Salinities along a line of subgrid locations [S ~> ppt] + real :: p5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Pressures along a line of subgrid locations [R L2 T-2 ~> Pa] + real :: a5((5*HI%iscB+1):(5*(HI%iecB+2))) ! Specific volumes anomalies along a line of subgrid + ! locations [R-1 ~> m3 kg-3] + real :: T15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Temperatures at an array of subgrid locations [C ~> degC] + real :: S15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Salinities at an array of subgrid locations [S ~> ppt] + real :: p15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Pressures at an array of subgrid locations [R L2 T-2 ~> Pa] + real :: a15((15*HI%iscB+1):(15*(HI%iecB+1))) ! Specific volumes at an array of subgrid locations [R ~> kg m-3] real :: wt_t(5), wt_b(5) ! Weights of top and bottom values at quadrature points [nondim] real :: T_top, T_bot ! Horizontally interpolated temperature at the cell top and bottom [C ~> degC] real :: S_top, S_bot ! Horizontally interpolated salinity at the cell top and bottom [S ~> ppt] @@ -1373,7 +1544,7 @@ subroutine int_spec_vol_dp_generic_plm(T_t, T_b, S_t, S_b, p_t, p_b, alpha_ref, real :: alpha_anom ! The depth averaged specific density anomaly [R-1 ~> m3 kg-1] real :: dp ! The pressure change through a layer [R L2 T-2 ~> Pa] - real :: dp_90(2:4) ! The pressure change through a layer divided by 90 [R L2 T-2 ~> Pa] + real :: dp_90(2:4,SZIB_(HI)) ! The pressure change through a layer divided by 90 [R L2 T-2 ~> Pa] real :: hWght ! A pressure-thickness below topography [R L2 T-2 ~> Pa] real :: hL, hR ! Pressure-thicknesses of the columns to the left and right [R L2 T-2 ~> Pa] real :: iDenom ! The inverse of the denominator in the weights [T4 R-2 L-4 ~> Pa-2] @@ -1385,6 +1556,9 @@ subroutine int_spec_vol_dp_generic_plm(T_t, T_b, S_t, S_b, p_t, p_b, alpha_ref, ! 5 sub-column locations [L2 T-2 ~> m2 s-2] real, parameter :: C1_90 = 1.0/90.0 ! A rational constant [nondim] logical :: do_massWeight ! Indicates whether to do mass weighting. + integer, dimension(2) :: EOSdom_h5 ! The 5-point h-point i-computational domain for the equation of state + integer, dimension(2) :: EOSdom_q15 ! The 3x5-point q-point i-computational domain for the equation of state + integer, dimension(2) :: EOSdom_h15 ! The 3x5-point h-point i-computational domain for the equation of state integer :: Isq, Ieq, Jsq, Jeq, i, j, m, n, pos Isq = HI%IscB ; Ieq = HI%IecB ; Jsq = HI%JscB ; Jeq = HI%JecB @@ -1397,140 +1571,157 @@ subroutine int_spec_vol_dp_generic_plm(T_t, T_b, S_t, S_b, p_t, p_b, alpha_ref, wt_b(n) = 1.0 - wt_t(n) enddo + ! Set the loop ranges for equation of state calculations at various points. + EOSdom_h5(1) = 1 ; EOSdom_h5(2) = 5*(Ieq-Isq+2) + EOSdom_q15(1) = 1 ; EOSdom_q15(2) = 15*(Ieq-Isq+1) + EOSdom_h15(1) = 1 ; EOSdom_h15(2) = 15*(HI%iec-HI%isc+1) + ! 1. Compute vertical integrals - do j=Jsq,Jeq+1 ; do i=Isq,Ieq+1 - dp = p_b(i,j) - p_t(i,j) - do n=1,5 ! T, S and p are linearly interpolated in the vertical. - p5(n) = wt_t(n) * p_t(i,j) + wt_b(n) * p_b(i,j) - S5(n) = wt_t(n) * S_t(i,j) + wt_b(n) * S_b(i,j) - T5(n) = wt_t(n) * T_t(i,j) + wt_b(n) * T_b(i,j) + do j=Jsq,Jeq+1 + do i=Isq,Ieq+1 + do n=1,5 ! T, S and p are linearly interpolated in the vertical. + p5(i*5+n) = wt_t(n) * p_t(i,j) + wt_b(n) * p_b(i,j) + S5(i*5+n) = wt_t(n) * S_t(i,j) + wt_b(n) * S_b(i,j) + T5(i*5+n) = wt_t(n) * T_t(i,j) + wt_b(n) * T_b(i,j) + enddo enddo - call calculate_spec_vol(T5, S5, p5, a5, EOS, spv_ref=alpha_ref) - - ! Use Boole's rule to estimate the interface height anomaly change. - alpha_anom = C1_90*((7.0*(a5(1)+a5(5)) + 32.0*(a5(2)+a5(4))) + 12.0*a5(3)) - dza(i,j) = dp*alpha_anom - ! Use a Boole's-rule-like fifth-order accurate estimate of the double integral of - ! the interface height anomaly. - if (present(intp_dza)) intp_dza(i,j) = 0.5*dp**2 * & - (alpha_anom - C1_90*(16.0*(a5(4)-a5(2)) + 7.0*(a5(5)-a5(1))) ) - enddo ; enddo + call calculate_spec_vol(T5, S5, p5, a5, EOS, EOSdom_h5, spv_ref=alpha_ref) + do i=Isq,Ieq+1 + ! Use Boole's rule to estimate the interface height anomaly change. + dp = p_b(i,j) - p_t(i,j) + alpha_anom = C1_90*((7.0*(a5(i*5+1)+a5(i*5+5)) + 32.0*(a5(i*5+2)+a5(i*5+4))) + 12.0*a5(i*5+3)) + dza(i,j) = dp*alpha_anom + ! Use a Boole's-rule-like fifth-order accurate estimate of the double integral of + ! the interface height anomaly. + if (present(intp_dza)) intp_dza(i,j) = 0.5*dp**2 * & + (alpha_anom - C1_90*(16.0*(a5(i*5+4)-a5(i*5+2)) + 7.0*(a5(i*5+5)-a5(i*5+1))) ) + enddo + enddo ! 2. Compute horizontal integrals in the x direction - if (present(intx_dza)) then ; do j=HI%jsc,HI%jec ; do I=Isq,Ieq - ! hWght is the distance measure by which the cell is violation of - ! hydrostatic consistency. For large hWght we bias the interpolation - ! of T,S along the top and bottom integrals, almost like thickness - ! weighting. Note: To work in terrain following coordinates we could - ! offset this distance by the layer thickness to replicate other models. - hWght = 0.0 - if (do_massWeight) & - hWght = max(0., bathyP(i,j)-p_t(i+1,j), bathyP(i+1,j)-p_t(i,j)) - if (hWght > 0.) then - hL = (p_b(i,j) - p_t(i,j)) + dP_neglect - hR = (p_b(i+1,j) - p_t(i+1,j)) + dP_neglect - hWght = hWght * ( (hL-hR)/(hL+hR) )**2 - iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) - hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom - hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom - else - hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 - endif + if (present(intx_dza)) then ; do j=HI%jsc,HI%jec + do I=Isq,Ieq + ! hWght is the distance measure by which the cell is violation of + ! hydrostatic consistency. For large hWght we bias the interpolation + ! of T,S along the top and bottom integrals, almost like thickness + ! weighting. Note: To work in terrain following coordinates we could + ! offset this distance by the layer thickness to replicate other models. + hWght = 0.0 + if (do_massWeight) & + hWght = max(0., bathyP(i,j)-p_t(i+1,j), bathyP(i+1,j)-p_t(i,j)) + if (hWght > 0.) then + hL = (p_b(i,j) - p_t(i,j)) + dP_neglect + hR = (p_b(i+1,j) - p_t(i+1,j)) + dP_neglect + hWght = hWght * ( (hL-hR)/(hL+hR) )**2 + iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) + hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom + hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom + else + hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 + endif - do m=2,4 - wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L - wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR - - ! T, S, and p are interpolated in the horizontal. The p interpolation - ! is linear, but for T and S it may be thickness weighted. - P_top = wt_L*p_t(i,j) + wt_R*p_t(i+1,j) - P_bot = wt_L*p_b(i,j) + wt_R*p_b(i+1,j) - T_top = wtT_L*T_t(i,j) + wtT_R*T_t(i+1,j) - T_bot = wtT_L*T_b(i,j) + wtT_R*T_b(i+1,j) - S_top = wtT_L*S_t(i,j) + wtT_R*S_t(i+1,j) - S_bot = wtT_L*S_b(i,j) + wtT_R*S_b(i+1,j) - dp_90(m) = C1_90*(P_bot - P_top) - - ! Salinity, temperature and pressure with linear interpolation in the vertical. - pos = (m-2)*5 - do n=1,5 - p15(pos+n) = wt_t(n) * P_top + wt_b(n) * P_bot - S15(pos+n) = wt_t(n) * S_top + wt_b(n) * S_bot - T15(pos+n) = wt_t(n) * T_top + wt_b(n) * T_bot + do m=2,4 + wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L + wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR + + ! T, S, and p are interpolated in the horizontal. The p interpolation + ! is linear, but for T and S it may be thickness weighted. + P_top = wt_L*p_t(i,j) + wt_R*p_t(i+1,j) + P_bot = wt_L*p_b(i,j) + wt_R*p_b(i+1,j) + T_top = wtT_L*T_t(i,j) + wtT_R*T_t(i+1,j) + T_bot = wtT_L*T_b(i,j) + wtT_R*T_b(i+1,j) + S_top = wtT_L*S_t(i,j) + wtT_R*S_t(i+1,j) + S_bot = wtT_L*S_b(i,j) + wtT_R*S_b(i+1,j) + dp_90(m,I) = C1_90*(P_bot - P_top) + + ! Salinity, temperature and pressure with linear interpolation in the vertical. + pos = i*15+(m-2)*5 + do n=1,5 + p15(pos+n) = wt_t(n) * P_top + wt_b(n) * P_bot + S15(pos+n) = wt_t(n) * S_top + wt_b(n) * S_bot + T15(pos+n) = wt_t(n) * T_top + wt_b(n) * T_bot + enddo enddo enddo - call calculate_spec_vol(T15, S15, p15, a15, EOS, spv_ref=alpha_ref) + call calculate_spec_vol(T15, S15, p15, a15, EOS, EOSdom_q15, spv_ref=alpha_ref) - intp(1) = dza(i,j) ; intp(5) = dza(i+1,j) - do m=2,4 - ! Use Boole's rule to estimate the interface height anomaly change. - ! The integrals at the ends of the segment are already known. - pos = (m-2)*5 - intp(m) = dp_90(m)*((7.0*(a15(pos+1)+a15(pos+5)) + & - 32.0*(a15(pos+2)+a15(pos+4))) + 12.0*a15(pos+3)) + do I=Isq,Ieq + intp(1) = dza(i,j) ; intp(5) = dza(i+1,j) + do m=2,4 + ! Use Boole's rule to estimate the interface height anomaly change. + ! The integrals at the ends of the segment are already known. + pos = I*15+(m-2)*5 + intp(m) = dp_90(m,I)*((7.0*(a15(pos+1)+a15(pos+5)) + & + 32.0*(a15(pos+2)+a15(pos+4))) + 12.0*a15(pos+3)) + enddo + ! Use Boole's rule to integrate the interface height anomaly values in x. + intx_dza(I,j) = C1_90*((7.0*(intp(1)+intp(5)) + 32.0*(intp(2)+intp(4))) + & + 12.0*intp(3)) enddo - ! Use Boole's rule to integrate the interface height anomaly values in x. - intx_dza(I,j) = C1_90*((7.0*(intp(1)+intp(5)) + 32.0*(intp(2)+intp(4))) + & - 12.0*intp(3)) - enddo ; enddo ; endif + enddo ; endif ! 3. Compute horizontal integrals in the y direction - if (present(inty_dza)) then ; do J=Jsq,Jeq ; do i=HI%isc,HI%iec - ! hWght is the distance measure by which the cell is violation of - ! hydrostatic consistency. For large hWght we bias the interpolation - ! of T,S along the top and bottom integrals, like thickness weighting. - hWght = 0.0 - if (do_massWeight) & - hWght = max(0., bathyP(i,j)-p_t(i,j+1), bathyP(i,j+1)-p_t(i,j)) - if (hWght > 0.) then - hL = (p_b(i,j) - p_t(i,j)) + dP_neglect - hR = (p_b(i,j+1) - p_t(i,j+1)) + dP_neglect - hWght = hWght * ( (hL-hR)/(hL+hR) )**2 - iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) - hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom - hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom - else - hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 - endif + if (present(inty_dza)) then ; do J=Jsq,Jeq + do i=HI%isc,HI%iec + ! hWght is the distance measure by which the cell is violation of + ! hydrostatic consistency. For large hWght we bias the interpolation + ! of T,S along the top and bottom integrals, like thickness weighting. + hWght = 0.0 + if (do_massWeight) & + hWght = max(0., bathyP(i,j)-p_t(i,j+1), bathyP(i,j+1)-p_t(i,j)) + if (hWght > 0.) then + hL = (p_b(i,j) - p_t(i,j)) + dP_neglect + hR = (p_b(i,j+1) - p_t(i,j+1)) + dP_neglect + hWght = hWght * ( (hL-hR)/(hL+hR) )**2 + iDenom = 1.0 / ( hWght*(hR + hL) + hL*hR ) + hWt_LL = (hWght*hL + hR*hL) * iDenom ; hWt_LR = (hWght*hR) * iDenom + hWt_RR = (hWght*hR + hR*hL) * iDenom ; hWt_RL = (hWght*hL) * iDenom + else + hWt_LL = 1.0 ; hWt_LR = 0.0 ; hWt_RR = 1.0 ; hWt_RL = 0.0 + endif - do m=2,4 - wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L - wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR - - ! T, S, and p are interpolated in the horizontal. The p interpolation - ! is linear, but for T and S it may be thickness weighted. - P_top = wt_L*p_t(i,j) + wt_R*p_t(i,j+1) - P_bot = wt_L*p_b(i,j) + wt_R*p_b(i,j+1) - T_top = wtT_L*T_t(i,j) + wtT_R*T_t(i,j+1) - T_bot = wtT_L*T_b(i,j) + wtT_R*T_b(i,j+1) - S_top = wtT_L*S_t(i,j) + wtT_R*S_t(i,j+1) - S_bot = wtT_L*S_b(i,j) + wtT_R*S_b(i,j+1) - dp_90(m) = C1_90*(P_bot - P_top) - - ! Salinity, temperature and pressure with linear interpolation in the vertical. - pos = (m-2)*5 - do n=1,5 - p15(pos+n) = wt_t(n) * P_top + wt_b(n) * P_bot - S15(pos+n) = wt_t(n) * S_top + wt_b(n) * S_bot - T15(pos+n) = wt_t(n) * T_top + wt_b(n) * T_bot + do m=2,4 + wt_L = 0.25*real(5-m) ; wt_R = 1.0-wt_L + wtT_L = wt_L*hWt_LL + wt_R*hWt_RL ; wtT_R = wt_L*hWt_LR + wt_R*hWt_RR + + ! T, S, and p are interpolated in the horizontal. The p interpolation + ! is linear, but for T and S it may be thickness weighted. + P_top = wt_L*p_t(i,j) + wt_R*p_t(i,j+1) + P_bot = wt_L*p_b(i,j) + wt_R*p_b(i,j+1) + T_top = wtT_L*T_t(i,j) + wtT_R*T_t(i,j+1) + T_bot = wtT_L*T_b(i,j) + wtT_R*T_b(i,j+1) + S_top = wtT_L*S_t(i,j) + wtT_R*S_t(i,j+1) + S_bot = wtT_L*S_b(i,j) + wtT_R*S_b(i,j+1) + dp_90(m,i) = C1_90*(P_bot - P_top) + + ! Salinity, temperature and pressure with linear interpolation in the vertical. + pos = i*15+(m-2)*5 + do n=1,5 + p15(pos+n) = wt_t(n) * P_top + wt_b(n) * P_bot + S15(pos+n) = wt_t(n) * S_top + wt_b(n) * S_bot + T15(pos+n) = wt_t(n) * T_top + wt_b(n) * T_bot + enddo enddo enddo - call calculate_spec_vol(T15, S15, p15, a15, EOS, spv_ref=alpha_ref) + call calculate_spec_vol(T15(15*HI%isc+1:), S15(15*HI%isc+1:), p15(15*HI%isc+1:), & + a15(15*HI%isc+1:), EOS, EOSdom_h15, spv_ref=alpha_ref) - intp(1) = dza(i,j) ; intp(5) = dza(i,j+1) - do m=2,4 - ! Use Boole's rule to estimate the interface height anomaly change. - ! The integrals at the ends of the segment are already known. - pos = (m-2)*5 - intp(m) = dp_90(m) * ((7.0*(a15(pos+1)+a15(pos+5)) + & - 32.0*(a15(pos+2)+a15(pos+4))) + 12.0*a15(pos+3)) + do i=HI%isc,HI%iec + intp(1) = dza(i,j) ; intp(5) = dza(i,j+1) + do m=2,4 + ! Use Boole's rule to estimate the interface height anomaly change. + ! The integrals at the ends of the segment are already known. + pos = i*15+(m-2)*5 + intp(m) = dp_90(m,i) * ((7.0*(a15(pos+1)+a15(pos+5)) + & + 32.0*(a15(pos+2)+a15(pos+4))) + 12.0*a15(pos+3)) + enddo + ! Use Boole's rule to integrate the interface height anomaly values in x. + inty_dza(i,J) = C1_90*((7.0*(intp(1)+intp(5)) + 32.0*(intp(2)+intp(4))) + & + 12.0*intp(3)) enddo - ! Use Boole's rule to integrate the interface height anomaly values in x. - inty_dza(i,J) = C1_90*((7.0*(intp(1)+intp(5)) + 32.0*(intp(2)+intp(4))) + & - 12.0*intp(3)) - enddo ; enddo ; endif + enddo ; endif end subroutine int_spec_vol_dp_generic_plm