From 67c2163cdf479362f721ed07d32b25f58d9f433b Mon Sep 17 00:00:00 2001 From: Robert Hallberg Date: Fri, 19 Jul 2024 17:36:17 -0400 Subject: [PATCH] Revisions of sub-ice pressure gradient fixes Refactored and revised the recently added code in MOM_PressureForce_FV.F90 to reduce the number of calls to the equation of state routines, and corrected a number of minor bugs in the original implementation. Answers are bitwise identical unless the new options to reset the pressure gradient calculations are actively selected. --- src/core/MOM_PressureForce_FV.F90 | 254 +++++++++++++++++++----------- 1 file changed, 165 insertions(+), 89 deletions(-) diff --git a/src/core/MOM_PressureForce_FV.F90 b/src/core/MOM_PressureForce_FV.F90 index 6a9620eb39..04e6ed7b96 100644 --- a/src/core/MOM_PressureForce_FV.F90 +++ b/src/core/MOM_PressureForce_FV.F90 @@ -619,6 +619,37 @@ subroutine PressureForce_FV_Bouss(h, tv, PFu, PFv, G, GV, US, CS, ALE_CSp, p_atm real, dimension(SZI_(G),SZJB_(G)) :: & inty_pa_cor ! Correction for curvature in inty_pa [R L2 T-2 ~> Pa] + ! These variables are used with reset_intxpa_integral. The values are taken from different + ! interfaces as a function of position. + real, dimension(SZIB_(G),SZJ_(G)) :: & + T_int_W, T_int_E, & ! Temperatures on the reference interface to the east and west of a u-point [C ~> degC] + S_int_W, S_int_E, & ! Salinities on the reference interface to the east and west of a u-point [S ~> ppt] + p_int_W, p_int_E, & ! Pressures on the reference interface to the east and west of a u-point [R L2 T-2 ~> Pa] + rho_x_W, rho_x_E, & ! Density anomalies on the reference interface to the east and west + ! of a u-point [R ~> kg m-3] + intx_pa_nonlin, & ! Deviations in the previous version of intx_pa for the reference interface + ! from the value that would be obtained from assuming that pressure varies + ! linearly with depth along that interface [R L2 T-2 ~> Pa]. + dgeo_x, & ! The change in x in geopotenial height along the reference interface [L2 T-2 ~> m2 s-2] + intx_pa_cor_ri ! The correction to intx_pa based on the reference interface calculations [R L2 T-2 ~> Pa] + real, dimension(SZI_(G),SZJB_(G)) :: & + T_int_S, T_int_N, & ! Temperatures on the reference interface to the north and south of a v-point [C ~> degC] + S_int_S, S_int_N, & ! Salinities on the reference interface to the north and south of a v-point [S ~> ppt] + p_int_S, p_int_N, & ! Pressures on the reference interface to the north and south of a v-point [R L2 T-2 ~> Pa] + rho_y_S, rho_y_N, & ! Density anomalies on the reference interface to the north and south + ! of a v-point [R ~> kg m-3] + inty_pa_nonlin, & ! Deviations in the previous version of intx_pa for the reference interface + ! from the value that would be obtained from assuming that pressure varies + ! linearly with depth along that interface [R L2 T-2 ~> Pa]. + dgeo_y, & ! The change in y in geopotenial height along the reference interface [L2 T-2 ~> m2 s-2] + inty_pa_cor_ri ! The correction to inty_pa based on the reference interface calculations [R L2 T-2 ~> Pa] + logical, dimension(SZIB_(G),SZJ_(G)) :: & + seek_x_cor ! If true, try to find a u-point interface that would provide a better estimate + ! of the curvature terms in the intx_pa. + logical, dimension(SZI_(G),SZJB_(G)) :: & + seek_y_cor ! If true, try to find a v-point interface that would provide a better estimate + ! of the curvature terms in the inty_pa. + real, dimension(SZI_(G),SZJ_(G),SZK_(GV)), target :: & T_tmp, & ! Temporary array of temperatures where layers that are lighter ! than the mixed layer have the mixed layer's properties [C ~> degC]. @@ -661,13 +692,18 @@ subroutine PressureForce_FV_Bouss(h, tv, PFu, PFv, G, GV, US, CS, ALE_CSp, p_atm logical :: use_p_atm ! If true, use the atmospheric pressure. logical :: use_ALE ! If true, use an ALE pressure reconstruction. logical :: use_EOS ! If true, density is calculated from T & S using an equation of state. + logical :: do_more_k ! If true, there are still points where a flatter interface remains to be found. type(thermo_var_ptrs) :: tv_tmp! A structure of temporary T & S. integer, dimension(2) :: EOSdom ! The i-computational domain for the equation of state integer, dimension(2) :: EOSdom_h ! The i-computational domain for the equation of state at tracer points + integer, dimension(2) :: EOSdom_u ! The i-computational domain for the equation of state at u-velocity points + integer, dimension(2) :: EOSdom_v ! The i-computational domain for the equation of state at v-velocity points integer :: is, ie, js, je, Isq, Ieq, Jsq, Jeq, nz, nkmb integer :: i, j, k, m, k2 real :: T5(5), S5(5) ! Temperatures and salinities at five quadrature points [C ~> degC] and [S ~> ppt] - real :: p5(5) ! Pressures at five quadrature points [R L2 T-2 ~> Pa] + real :: p5(5) ! Full pressures at five quadrature points for use with the equation of state [R L2 T-2 ~> Pa] + real :: pa5(5) ! The pressure anomaly (i.e. pressure + g*RHO_0*e) at five + ! quadrature points [R L2 T-2 ~> Pa]. real :: r5(5) ! Densities at five quadrature points [R ~> kg m-3] real, parameter :: C1_6 = 1.0/6.0 ! A rational constant [nondim] real, parameter :: C1_90 = 1.0/90.0 ! A rational constant [nondim] @@ -679,6 +715,8 @@ subroutine PressureForce_FV_Bouss(h, tv, PFu, PFv, G, GV, US, CS, ALE_CSp, p_atm nkmb=GV%nk_rho_varies Isq = G%IscB ; Ieq = G%IecB ; Jsq = G%JscB ; Jeq = G%JecB EOSdom(1) = Isq - (G%isd-1) ; EOSdom(2) = G%iec+1 - (G%isd-1) + EOSdom_u(1) = Isq - (G%IsdB-1) ; EOSdom_u(2) = Ieq - (G%IsdB-1) + EOSdom_v(1) = is - (G%isd-1) ; EOSdom_v(2) = ie - (G%isd-1) if (.not.CS%initialized) call MOM_error(FATAL, & "MOM_PressureForce_FV_Bouss: Module must be initialized before it is used.") @@ -693,6 +731,7 @@ subroutine PressureForce_FV_Bouss(h, tv, PFu, PFv, G, GV, US, CS, ALE_CSp, p_atm dz_neglect = GV%dZ_subroundoff I_Rho0 = 1.0 / GV%Rho0 G_Rho0 = GV%g_Earth / GV%Rho0 + GxRho = GV%g_Earth * GV%Rho0 rho_ref = CS%Rho0 if ((CS%id_MassWt_u > 0) .or. (CS%id_MassWt_v > 0)) then @@ -828,12 +867,12 @@ subroutine PressureForce_FV_Bouss(h, tv, PFu, PFv, G, GV, US, CS, ALE_CSp, p_atm if (use_p_atm) then !$OMP parallel do default(shared) do j=Jsq,Jeq+1 ; do i=Isq,Ieq+1 - pa(i,j,1) = (rho_ref*GV%g_Earth)*(e(i,j,1) - G%Z_ref) + p_atm(i,j) + pa(i,j,1) = GxRho*(e(i,j,1) - G%Z_ref) + p_atm(i,j) enddo ; enddo else !$OMP parallel do default(shared) do j=Jsq,Jeq+1 ; do i=Isq,Ieq+1 - pa(i,j,1) = (rho_ref*GV%g_Earth)*(e(i,j,1) - G%Z_ref) + pa(i,j,1) = GxRho*(e(i,j,1) - G%Z_ref) enddo ; enddo endif @@ -920,7 +959,6 @@ subroutine PressureForce_FV_Bouss(h, tv, PFu, PFv, G, GV, US, CS, ALE_CSp, p_atm if (CS%correction_intxpa) then ! Determine surface density for use in the pressure gradient corrections - GxRho = GV%g_Earth * CS%rho0 if (use_ALE .and. CS%Recon_Scheme > 0) then !$OMP parallel do default(shared) private(p_surf_EOS) do j=Jsq,Jeq+1 @@ -949,7 +987,7 @@ subroutine PressureForce_FV_Bouss(h, tv, PFu, PFv, G, GV, US, CS, ALE_CSp, p_atm do j=js,je ; do I=Isq,Ieq intx_pa_cor(I,j) = 0.0 dz_geo_sfc = GV%g_Earth * (e(i+1,j,1)-e(i,j,1)) - if (dz_geo_sfc * (rho_ref - (pa(i+1,j,1)-pa(i,j,1))*dz_geo_sfc) > 0.0) then + if ((dz_geo_sfc * rho_ref - (pa(i+1,j,1)-pa(i,j,1)))*dz_geo_sfc > 0.0) then ! The pressure/depth relationship has a positive implied density given by ! rho_implied = rho_ref - (pa(i+1,j,1)-pa(i,j,1)) / dz_geo_sfc if (-dz_geo_sfc * (pa(i+1,j,1)-pa(i,j,1)) > & @@ -958,32 +996,28 @@ subroutine PressureForce_FV_Bouss(h, tv, PFu, PFv, G, GV, US, CS, ALE_CSp, p_atm ! balance. This test gets rid of pressure differences that are small, e.g. open ocean. if (CS%correction_intxpa_5pt) then ! Use 5 point quadrature to calculate intxpa - T5(1) = T_t(I,j,1) ; T5(5) = T_t(I+1,j,1) - S5(1) = S_t(I,j,1) ; S5(5) = S_t(I+1,j,1) + T5(1) = T_t(i,j,1) ; T5(5) = T_t(i+1,j,1) + S5(1) = S_t(i,j,1) ; S5(5) = S_t(i+1,j,1) + pa5(1) = pa(i,j,1) ; pa5(5) = pa(i+1,j,1) ! Pressure input to density EOS is the actual pressure not adjusted for rho_ref. - p5(1) = pa(i,j,1) - (rho_ref*GV%g_Earth)*(e(i,j,1) - G%Z_ref) - p5(5) = pa(i+1,j,1) - (rho_ref*GV%g_Earth)*(e(i,j,1) - G%Z_ref) + p5(1) = pa(i,j,1) - GxRho*(e(i,j,1) - G%Z_ref) + p5(5) = pa(i+1,j,1) - GxRho*(e(i+1,j,1) - G%Z_ref) do m=2,4 wt_R = 0.25*real(m-1) - T5(m) = T5(1)+(T5(5)-T5(1))*wt_R !Quadratic: + (T5(5)-T5(1))*B*wt_R*(wt_R-1); - S5(m) = S5(1)+(S5(5)-S5(1))*wt_R !+ (S5(5)-S5(1))*B*wt_R*(wt_R-1); - p5(m) = p5(1)+(p5(5)-p5(1))*wt_R + T5(m) = T5(1) + (T5(5)-T5(1))*wt_R !Quadratic: + (T5(5)-T5(1))*B*wt_R*(wt_R-1); + S5(m) = S5(1) + (S5(5)-S5(1))*wt_R !+ (S5(5)-S5(1))*B*wt_R*(wt_R-1); + p5(m) = p5(1) + (p5(5)-p5(1))*wt_R enddo !m call calculate_density(T5, S5, p5, r5, tv%eqn_of_state, rho_ref=rho_ref) - ! add rhoref back in - do m=1,5 - p5(m) = p5(m) + (rho_ref*GV%g_Earth)*(e(i,j,1) - G%Z_ref) - enddo do m=2,4 ! Make pressure curvature a difference from the linear fit of pressure between the two points ! Do this by integrating pressure between each of the 5 points and adding up ! This way integration direction doesn't matter when adding up pressure from previous point - p5(m) = p5(m-1) + ((0.25*(p5(5)-p5(1)) + 0.125*(r5(5)+r5(1))*dz_geo_sfc) - & - 0.125*(r5(m)+r5(m-1))*dz_geo_sfc) + pa5(m) = pa5(m-1) + ((0.25*(pa5(5)-pa5(1)) + 0.125*(r5(5)+r5(1))*dz_geo_sfc) - & + 0.125*(r5(m)+r5(m-1))*dz_geo_sfc) enddo - intx_pa(I,j,1) = C1_90*(7.0*(p5(1)+p5(5)) + 32.0*(p5(2)+p5(4)) + 12.0*p5(3)) - ! Get correction from difference between this and linear average. This is clunky and repetitive. - intx_pa_cor(I,j) = -0.5*(pa(i,j,1) + pa(i+1,j,1)) + intx_pa(I,j,1) + ! Get a correction from difference between this and linear average. + intx_pa_cor(I,j) = C1_90*((32.0*(pa5(2)+pa5(4)) + 12.0*pa5(3)) - 38.0*(pa5(1) + pa5(5))) else ! Do not use 5-point quadrature. intx_pa_cor(I,j) = C1_12 * (rho_top(i+1,j)-rho_top(i,j)) * dz_geo_sfc endif @@ -995,7 +1029,7 @@ subroutine PressureForce_FV_Bouss(h, tv, PFu, PFv, G, GV, US, CS, ALE_CSp, p_atm do J=Jsq,Jeq ; do i=is,ie inty_pa_cor(i,J) = 0.0 dz_geo_sfc = GV%g_Earth * (e(i,j+1,1)-e(i,j,1)) - if (dz_geo_sfc * (rho_ref - (pa(i,j+1,1)-pa(i,j,1))*dz_geo_sfc) > 0.0) then + if ((dz_geo_sfc * rho_ref - (pa(i,j+1,1)-pa(i,j,1)))*dz_geo_sfc > 0.0) then ! The pressure/depth relationship has a positive implied density if (-dz_geo_sfc * (pa(i,j+1,1)-pa(i,j,1)) > & 0.25*((rho_top(i,j+1)+rho_top(i,j))-2.0*rho_ref) * dz_geo_sfc**2) then @@ -1003,32 +1037,28 @@ subroutine PressureForce_FV_Bouss(h, tv, PFu, PFv, G, GV, US, CS, ALE_CSp, p_atm ! balance. This test gets rid of pressure differences that are small, e.g. open ocean. if (CS%correction_intxpa_5pt) then ! Use 5 point quadrature to calculate intypa - T5(1) = T_t(I,j,1) ; T5(5) = T_t(i,j+1,1) - S5(1) = S_t(I,j,1) ; S5(5) = S_t(i,j+1,1) + T5(1) = T_t(i,j,1) ; T5(5) = T_t(i,j+1,1) + S5(1) = S_t(i,j,1) ; S5(5) = S_t(i,j+1,1) + pa5(1) = pa(i,j,1) ; pa5(5) = pa(i,j+1,1) ! Pressure input to density EOS is the actual pressure not adjusted for rho_ref. - p5(1) = pa(i,j,1) - (rho_ref*GV%g_Earth)*(e(i,j,1) - G%Z_ref) - p5(5) = pa(i,j+1,1) - (rho_ref*GV%g_Earth)*(e(i,j,1) - G%Z_ref) + p5(1) = pa(i,j,1) - GxRho*(e(i,j,1) - G%Z_ref) + p5(5) = pa(i,j+1,1) - GxRho*(e(i,j+1,1) - G%Z_ref) do m=2,4 wt_R = 0.25*real(m-1) - T5(m) = T5(1)+(T5(5)-T5(1))*wt_R !Quadratic: + (T5(5)-T5(1))*B*wt_R*(wt_R-1); - S5(m) = S5(1)+(S5(5)-S5(1))*wt_R !+ (S5(5)-S5(1))*B*wt_R*(wt_R-1); - p5(m) = p5(1)+(p5(5)-p5(1))*wt_R + T5(m) = T5(1) + (T5(5)-T5(1))*wt_R !Quadratic: + (T5(5)-T5(1))*B*wt_R*(wt_R-1); + S5(m) = S5(1) + (S5(5)-S5(1))*wt_R !+ (S5(5)-S5(1))*B*wt_R*(wt_R-1); + p5(m) = p5(1) + (p5(5)-p5(1))*wt_R enddo !m call calculate_density(T5, S5, p5, r5, tv%eqn_of_state, rho_ref=rho_ref) - ! add rhoref back in - do m=1,5 - p5(m) = p5(m) + (rho_ref*GV%g_Earth)*(e(i,j,1) - G%Z_ref) - enddo do m=2,4 ! Make pressure curvature a difference from the linear fit of pressure between the two points ! Do this by integrating pressure between each of the 5 points and adding up ! This way integration direction doesn't matter when adding up pressure from previous point - p5(m) = p5(m-1) + ((0.25*(p5(5)-p5(1)) + 0.125*(r5(5)+r5(1))*dz_geo_sfc) - & - 0.125*(r5(m)+r5(m-1))*dz_geo_sfc) + pa5(m) = pa5(m-1) + ((0.25*(pa5(5)-pa5(1)) + 0.125*(r5(5)+r5(1))*dz_geo_sfc) - & + 0.125*(r5(m)+r5(m-1))*dz_geo_sfc) enddo - inty_pa(I,j,1) = C1_90*(7.0*(p5(1)+p5(5)) + 32.0*(p5(2)+p5(4)) + 12.0*p5(3)) - ! Get correction from difference between this and linear average. This is clunky and repetitive. - inty_pa_cor(I,j) = -0.5*(pa(i,j,1) + pa(i,j+1,1)) + inty_pa(I,j,1) + ! Get a correction from difference between this and linear average. + inty_pa_cor(i,J) = C1_90*((32.0*(pa5(2)+pa5(4)) + 12.0*pa5(3)) - 38.0*(pa5(1) + pa5(5))) else ! Do not use 5-point quadrature. inty_pa_cor(i,J) = C1_12 * (rho_top(i,j+1)-rho_top(i,j)) * dz_geo_sfc endif @@ -1064,61 +1094,107 @@ subroutine PressureForce_FV_Bouss(h, tv, PFu, PFv, G, GV, US, CS, ALE_CSp, p_atm enddo ; enddo enddo - ! Having stored the pressure gradient info, we can work out where the first nonvanished layers is - ! reset intxpa there, then adjust intxpa above and below using the same increments between interfaces as above. - ! Note: This currently assumes pressure varies quadratically along the bottom of the topmost non-vanished, - ! non-mass-weighted layer. Possibly 5 pt quadrature should be implemented as for the surface. if (CS%reset_intxpa_integral) then - do j=Jsq,Jeq+1 ; do i=Isq,Ieq+1 - kloop: do k=1,nz-1 - ! Check if both sides are nonvanished and mass-weighting is not activated in the subgrid interpolation. - if ((h(i,j,k)>CS%h_nonvanished) .and. (h(i+1,j,k)>CS%h_nonvanished)) then - if (.not. (max(0., e(i+1,j,K+1)-e(i,j,1), e(i,j,K+1)-e(i+1,j,1)) > 0.0)) then - ! Calculate pressure at the bottom of this cell (pa are known) - ! then we have a "good estimate" for intxpa (it might have quadratic pressure dependence if sloped) - ! now we recalculate intx_pa and PFu at each level working up and then down - call calculate_density(T_t(i,j,k+1), S_t(i,j,k+1), pa(i,j,K+1), rho_tl, & - tv%eqn_of_state, rho_ref=rho_ref) - call calculate_density(T_t(i+1,j,k+1), S_t(i+1,j,k+1), pa(i+1,j,K+1), rho_tr, & - tv%eqn_of_state, rho_ref=rho_ref) - inty_pa_cor(I,j) = C1_12 * (rho_tr-rho_tl)*GV%g_Earth * (e(i+1,j,K+1)-e(i,j,K+1)) - intx_pa(i,j,K+1) = 0.5*(pa(i,j,K+1) + pa(i+1,j,K+1)) + inty_pa_cor(I,j) - do k2=1,k - intx_pa(I,j,K-K2+1) = intx_pa(I,j,(K-K2+2)) - intx_dpa(i,j,k-k2+1) - enddo - do k2=k+2,nz - intx_pa(I,j,K2) = intx_pa(I,j,K2-1) + intx_dpa(i,j,k2-1) - enddo - exit kloop - endif ; endif - enddo kloop + ! Having stored the pressure gradient info, we can work out where the first nonvanished layers is + ! reset intxpa there, then adjust intxpa throughout the water column. + ! Note: This currently assumes pressure varies quadratically along the bottom of the topmost non-vanished, + ! non-mass-weighted layer. Possibly 5 pt quadrature should be implemented as for the surface. + + ! Zero out the 2-d arrays that will be set from various reference interfaces. + T_int_W(:,:) = 0.0 ; S_int_W(:,:) = 0.0 ; p_int_W(:,:) = 0.0 + T_int_E(:,:) = 0.0 ; S_int_E(:,:) = 0.0 ; p_int_E(:,:) = 0.0 + intx_pa_nonlin(:,:) = 0.0 ; dgeo_x(:,:) = 0.0 ; intx_pa_cor_ri(:,:) = 0.0 + do j=js,je ; do I=Isq,Ieq + seek_x_cor(I,j) = (G%mask2dCu(I,j) > 0.) enddo ; enddo + do k=1,nz-1 + do_more_k = .false. + do j=js,je ; do I=Isq,Ieq ; if (seek_x_cor(I,j)) then + ! Find the topmost layer for which both sides are nonvanished and mass-weighting is not + ! activated in the subgrid interpolation. + if (((h(i,j,k) > CS%h_nonvanished) .and. (h(i+1,j,k) > CS%h_nonvanished)) .and. & + (max(0., e(i+1,j,K+1)-e(i,j,1), e(i,j,K+1)-e(i+1,j,1)) <= 0.0)) then + ! Store properties at the bottom of this cell to get a "good estimate" for intxpa at + ! the interface below this cell (it might have quadratic pressure dependence if sloped) + T_int_W(I,j) = T_b(i,j,k) ; T_int_E(I,j) = T_b(i+1,j,k) + S_int_W(I,j) = S_b(i,j,k) ; S_int_E(I,j) = S_b(i+1,j,k) + p_int_W(I,j) = pa(i,j,K+1) - GxRho*(e(i,j,K+1) - G%Z_ref) + p_int_E(I,j) = pa(i+1,j,K+1) - GxRho*(e(i+1,j,K+1) - G%Z_ref) + intx_pa_nonlin(I,j) = intx_pa(I,j,K+1) - 0.5*(pa(i,j,K+1) + pa(i+1,j,K+1)) + dgeo_x(I,j) = GV%g_Earth * (e(i+1,j,K+1)-e(i,j,K+1)) + seek_x_cor(I,j) = .false. + else + do_more_k = .true. + endif + endif ; enddo ; enddo + if (.not.do_more_k) exit ! All reference interfaces have been found, so stop working downward. + enddo - do J=Jsq,Jeq+1 ; do i=is,ie+1 - kloop2: do k=1,nz-1 - ! Check if both sides are nonvanished and mass-weighting is not activated in the subgrid interpolation. - if ((h(i,j,k)>CS%h_nonvanished) .and. (h(i,j+1,k)>CS%h_nonvanished)) then - if (.not. (max(0., e(i,j+1,K+1)-e(i,j,1), e(i,j,K+1)-e(i,j+1,1)) > 0.0)) then - ! calculate pressure at the bottom of this cell (pa are known) - ! then we have a "good estimate" for intxpa (it might have quadratic pressure dependence if sloped) - ! now we recalculate intx_pa and PFu at each level working up and then down - call calculate_density(T_t(i,j,k+1), S_t(i,j,k+1), pa(i,j,K+1), rho_tl, & - tv%eqn_of_state, rho_ref=rho_ref) - call calculate_density(T_t(i,j+1,k+1), S_t(i,j+1,k+1), pa(i,j+1,K+1), rho_tr, & - tv%eqn_of_state, rho_ref=rho_ref) - inty_pa_cor(i,J) = C1_12 * (rho_tr-rho_tl) * GV%g_Earth * (e(i,j+1,K+1)-e(i,j,K+1)) - inty_pa(i,J,K+1) = 0.5*(pa(i,j,K+1) + pa(i,j+1,K+1)) + inty_pa_cor(i,J) - do k2=1,k - inty_pa(i,J,K-K2+1) = inty_pa(i,J,(K-K2+2)) - inty_dpa(i,J,k-k2+1) - enddo - do k2=k+2,nz - inty_pa(i,J,K2) = inty_pa(i,J,K2-1) + inty_dpa(i,J,k2-1) - enddo - exit kloop2 - endif ; endif - enddo kloop2 + do j=js,je + call calculate_density(T_int_W(:,j), S_int_W(:,j), p_int_W(:,j), rho_x_W(:,j), & + tv%eqn_of_state, EOSdom_u, rho_ref=rho_ref) + call calculate_density(T_int_E(:,j), S_int_E(:,j), p_int_E(:,j), rho_x_E(:,j), & + tv%eqn_of_state, EOSdom_u, rho_ref=rho_ref) + do I=Isq,Ieq + ! This expression assumes that density varies linearly with depth between the corners of the + ! reference interfaces found above to get a vertically uniform correction to intx_pa. + ! This can be used without masking because dgeo_x and intx_pa_nonlin are 0 over land. + intx_pa_cor_ri(I,j) = C1_12 * (rho_x_E(I,j)-rho_x_W(I,j)) * dgeo_x(I,j) - intx_pa_nonlin(I,j) + enddo + enddo + + ! Repeat the calculations above for v-velocity points. + T_int_S(:,:) = 0.0 ; S_int_S(:,:) = 0.0 ; p_int_S(:,:) = 0.0 + T_int_N(:,:) = 0.0 ; S_int_N(:,:) = 0.0 ; p_int_N(:,:) = 0.0 + inty_pa_nonlin(:,:) = 0.0 ; dgeo_y(:,:) = 0.0 ; inty_pa_cor_ri(:,:) = 0.0 + do J=Jsq,Jeq ; do i=is,ie + seek_y_cor(i,J) = (G%mask2dCv(i,J) > 0.) enddo ; enddo - endif ! intx_pa and inty_pa are now reset and should be correct + do k=1,nz-1 + do_more_k = .false. + do J=Jsq,Jeq ; do i=is,ie ; if (seek_y_cor(i,J)) then + ! Find the topmost layer for which both sides are nonvanished and mass-weighting is not + ! activated in the subgrid interpolation. + if (((h(i,j,k) > CS%h_nonvanished) .and. (h(i,j+1,k) > CS%h_nonvanished)) .and. & + (max(0., e(i,j+1,K+1)-e(i,j,1), e(i,j,K+1)-e(i,j+1,1)) <= 0.0)) then + ! Store properties at the bottom of this cell to get a "good estimate" for intypa at + ! the interface below this cell (it might have quadratic pressure dependence if sloped) + T_int_S(i,J) = T_b(i,j,k) ; T_int_N(i,J) = T_b(i,j+1,k) + S_int_S(i,J) = S_b(i,j,k) ; S_int_N(i,J) = S_b(i,j+1,k) + p_int_S(i,J) = pa(i,j,K+1) - GxRho*(e(i,j,K+1) - G%Z_ref) + p_int_N(i,J) = pa(i,j+1,K+1) - GxRho*(e(i,j+1,K+1) - G%Z_ref) + inty_pa_nonlin(i,J) = inty_pa(i,J,K+1) - 0.5*(pa(i,j,K+1) + pa(i,j+1,K+1)) + dgeo_y(i,J) = GV%g_Earth * (e(i,j+1,K+1)-e(i,j,K+1)) + seek_y_cor(i,J) = .false. + else + do_more_k = .true. + endif + endif ; enddo ; enddo + if (.not.do_more_k) exit ! All reference interfaces have been found, so stop working downward. + enddo + + do J=Jsq,Jeq + call calculate_density(T_int_S(:,J), S_int_S(:,J), p_int_S(:,J), rho_y_S(:,J), & + tv%eqn_of_state, EOSdom_v, rho_ref=rho_ref) + call calculate_density(T_int_N(:,J), S_int_N(:,J), p_int_N(:,J), rho_y_N(:,J), & + tv%eqn_of_state, EOSdom_v, rho_ref=rho_ref) + do i=is,ie + ! This expression assumes that density varies linearly with depth between the corners of the + ! reference interfaces found above to get a vertically uniform correction to inty_pa. + ! This can be used without masking because dgeo_y and inty_pa_nonlin are 0 over land. + inty_pa_cor_ri(i,J) = C1_12 * (rho_y_N(i,J)-rho_y_S(i,J)) * dgeo_y(i,J) - inty_pa_nonlin(i,J) + enddo + enddo + + ! Correct intx_pa and inty_pa at each interface using vertically constant corrections. + do K=1,nz+1 ; do j=js,je ; do I=Isq,Ieq + intx_pa(I,j,K) = intx_pa(I,j,K) + intx_pa_cor_ri(I,j) + enddo ; enddo ; enddo + + do K=1,nz+1 ; do J=Jsq,Jeq ; do i=is,ie + inty_pa(i,J,K) = inty_pa(i,J,K) + inty_pa_cor_ri(i,J) + enddo ; enddo ; enddo + endif ! intx_pa and inty_pa have now been reset to reflect the properties of an unimpeded interface. ! Compute pressure gradient in x direction !$OMP parallel do default(shared)