-
Notifications
You must be signed in to change notification settings - Fork 83
/
base_model.py
executable file
·212 lines (170 loc) · 6.93 KB
/
base_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""
Load the vgg16 weight and save it to special file
"""
#from torchvision.models.vgg import vgg16
import torch.nn as nn
import torch.nn.functional as F
import torch
from torch.autograd import Variable
from collections import OrderedDict
from torchvision.models.resnet import resnet18, resnet34, resnet50
def _ModifyConvStrideDilation(conv, stride=(1, 1), padding=None):
conv.stride = stride
if padding is not None:
conv.padding = padding
def _ModifyBlock(block, bottleneck=False, **kwargs):
for m in list(block.children()):
if bottleneck:
_ModifyConvStrideDilation(m.conv2, **kwargs)
else:
_ModifyConvStrideDilation(m.conv1, **kwargs)
if m.downsample is not None:
# need to make sure no padding for the 1x1 residual connection
_ModifyConvStrideDilation(list(m.downsample.children())[0], **kwargs)
class ResNet18(nn.Module):
def __init__(self):
super().__init__()
rn18 = resnet18(pretrained=True)
# discard last Resnet block, avrpooling and classification FC
# layer1 = up to and including conv3 block
self.layer1 = nn.Sequential(*list(rn18.children())[:6])
# layer2 = conv4 block only
self.layer2 = nn.Sequential(*list(rn18.children())[6:7])
# modify conv4 if necessary
# Always deal with stride in first block
modulelist = list(self.layer2.children())
_ModifyBlock(modulelist[0], stride=(1,1))
def forward(self, data):
layer1_activation = self.layer1(data)
x = layer1_activation
layer2_activation = self.layer2(x)
# Only need the output of conv4
return [layer2_activation]
class ResNet34(nn.Module):
def __init__(self, model_path=None):
super().__init__()
rn34 = resnet34(pretrained=(model_path is None))
if model_path is not None:
rn34.load_state_dict(torch.load(model_path))
# discard last Resnet block, avrpooling and classification FC
self.layer1 = nn.Sequential(*list(rn34.children())[:6])
self.layer2 = nn.Sequential(*list(rn34.children())[6:7])
# modify conv4 if necessary
# Always deal with stride in first block
modulelist = list(self.layer2.children())
_ModifyBlock(modulelist[0], stride=(1,1))
def forward(self, data):
layer1_activation = self.layer1(data)
x = layer1_activation
layer2_activation = self.layer2(x)
return [layer2_activation]
class L2Norm(nn.Module):
"""
Scale shall be learnable according to original paper
scale: initial scale number
chan_num: L2Norm channel number (norm over all channels)
"""
def __init__(self, scale=20, chan_num=512):
super(L2Norm, self).__init__()
# Scale across channels
self.scale = \
nn.Parameter(torch.Tensor([scale]*chan_num).view(1, chan_num, 1, 1))
def forward(self, data):
# normalize accross channel
return self.scale*data*data.pow(2).sum(dim=1, keepdim=True).clamp(min=1e-12).rsqrt()
def tailor_module(src_model, src_dir, tgt_model, tgt_dir):
state = torch.load(src_dir)
src_model.load_state_dict(state)
src_state = src_model.state_dict()
# only need features
keys1 = src_state.keys()
keys1 = [k for k in src_state.keys() if k.startswith("features")]
keys2 = tgt_model.state_dict().keys()
assert len(keys1) == len(keys2)
state = OrderedDict()
for k1, k2 in zip(keys1, keys2):
# print(k1, k2)
state[k2] = src_state[k1]
#diff_keys = state.keys() - target_model.state_dict().keys()
#print("Different Keys:", diff_keys)
# Remove unecessary keys
#for k in diff_keys:
# state.pop(k)
tgt_model.load_state_dict(state)
torch.save(tgt_model.state_dict(), tgt_dir)
# Default vgg16 in pytorch seems different from ssd
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
elif v == 'C':
# Notice ceil_mode is true
layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return layers
class Loss(nn.Module):
"""
Implements the loss as the sum of the followings:
1. Confidence Loss: All labels, with hard negative mining
2. Localization Loss: Only on positive labels
Suppose input dboxes has the shape 8732x4
"""
def __init__(self, dboxes, use_hpu=False, hpu_device=None):
super(Loss, self).__init__()
self.use_hpu = use_hpu
self.scale_xy = 1.0/dboxes.scale_xy
self.scale_wh = 1.0/dboxes.scale_wh
self.sl1_loss = nn.SmoothL1Loss(reduce=False)
self.dboxes = nn.Parameter(dboxes(order="xywh").transpose(0, 1).unsqueeze(dim = 0),
requires_grad=False)
# Two factor are from following links
# http://jany.st/post/2017-11-05-single-shot-detector-ssd-from-scratch-in-tensorflow.html
self.con_loss = nn.CrossEntropyLoss(reduce=False)
def _loc_vec(self, loc):
"""
Generate Location Vectors
"""
gxy = self.scale_xy*(loc[:, :2, :] - self.dboxes[:, :2, :])/self.dboxes[:, 2:, ]
gwh = self.scale_wh*(loc[:, 2:, :]/self.dboxes[:, 2:, :]).log()
return torch.cat((gxy, gwh), dim=1).contiguous()
def forward(self, ploc, plabel, gloc, glabel):
"""
ploc, plabel: Nx4x8732, Nxlabel_numx8732
predicted location and labels
gloc, glabel: Nx4x8732, Nx8732
ground truth location and labels
"""
mask = glabel > 0
pos_num = mask.sum(dim=1)
vec_gd = self._loc_vec(gloc)
# sum on four coordinates, and mask
sl1 = self.sl1_loss(ploc, vec_gd).sum(dim=1)
sl1 = (mask.float()*sl1).sum(dim=1)
# hard negative mining
con = self.con_loss(plabel, glabel)
# postive mask will never selected
con_neg = con.clone()
if self.use_hpu:
con_neg = con_neg * (1 - mask.float())
else:
con_neg[mask] = 0
_, con_idx = con_neg.sort(dim=1, descending=True)
_, con_rank = con_idx.sort(dim=1)
# number of negative three times positive
neg_num = torch.clamp(3*pos_num, max=mask.size(1)).unsqueeze(-1)
neg_mask = con_rank < neg_num
closs = (con*(mask.float() + neg_mask.float())).sum(dim=1)
# avoid no object detected
total_loss = sl1 + closs
num_mask = (pos_num > 0).float()
pos_num = pos_num.float().clamp(min=1e-6)
ret = (total_loss*num_mask/pos_num).mean(dim=0)
return ret