Note: The gpt-3.5-turbo-0613
model is deprecated and replaced with gpt-3.5-turbo
. Consequently, results obtained using gpt-3.5-turbo
may differ from those reported in earlier experiments using gpt-3.5-turbo-0613
.
- Clone the repository:
git clone https://github.com/HLR/BLInD.git
cd BLInD
- Install the required dependencies:
python -m pip install --upgrade pip
pip install -r requirements.txt
cd GG
To query LLMs for GG, use the main.py
script:
python main.py [--testdataset TESTDATASET] [--outputdataset OUTPUTDATASET]
[--openaikey OPENAIKEY] [--openaiorg OPENAIORG] [--replicatekey REPLICATEKEY]
[--samplenum SAMPLENUM] [--models MODELS [MODELS ...]] [--maxattempt MAXATTEMPT]
--testdataset
: Input test dataset (default: "../datasets/Colored_1000_examples.csv")--outputdataset
: Dataset folder to save the results (default: "../datasets/")--openaikey
: OpenAI API key (required for GPT models)--openaiorg
: OpenAI organization key--replicatekey
: Replicate.ai API key (required for non-GPT models)--samplenum
: Number of instances of the dataset to read (default: 2)--models
: Choose one or more models (choices: "gpt-3.5-turbo", "gpt-4-0613", "meta/meta-llama-3-70b-instruct", "mistralai/mistral-7b-instruct-v0.2", "meta/llama-2-70b-chat")--maxattempt
: Max number of attempts after a failed prompt (default: 10)
Note: For non-GPT models (Llama, Mistral), you need to provide a Replicate.ai API key using the --replicatekey
argument.
This program saves every answer after each prompt. If it terminates, run it again, and it will pick up where it left off.
To test LLMs for GG, use the test.py
script:
python test.py [--testdataset TESTDATASET] [--outputdataset OUTPUTDATASET]
[--models MODELS [MODELS ...]]
--testdataset
: Input test dataset (default: "../datasets/Colored_1000_examples.csv")--outputdataset
: Dataset folder that has saved the results (default: "../datasets/")--models
: Choose one or more models from the available options
The code uses a test dataset specified by the --testdataset
argument. By default, it uses the "../datasets/Colored_1000_examples.csv" dataset.
The code supports running Bayesian inference with the following LLMs:
- GPT-3.5-turbo
- GPT-4-0613
- Meta Llama 3 70B Instruct
- Mistral 7B Instruct v0.2
- Llama 2 70B Chat
The results of running Bayesian inference are saved in the dataset folder specified by the --outputdataset
argument. The output files are named based on the arguments set in main.py
.