-
Notifications
You must be signed in to change notification settings - Fork 2
/
pytorch_utils.py
268 lines (215 loc) · 8.99 KB
/
pytorch_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import math
import copy
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
__all__ = [
'mix_images', 'mix_labels',
'label_smooth', 'cross_entropy_loss_with_soft_target', 'cross_entropy_with_label_smoothing', 'aanet_loss',
'clean_num_batch_tracked', 'rm_bn_from_net',
'get_net_device', 'count_parameters', 'count_net_flops', 'measure_net_latency', 'get_net_info',
'build_optimizer', 'calc_learning_rate',
]
""" Mixup """
def mix_images(images, lam):
flipped_images = torch.flip(images, dims=[0]) # flip along the batch dimension
return lam * images + (1 - lam) * flipped_images
def mix_labels(target, lam, n_classes, label_smoothing=0.1):
onehot_target = label_smooth(target, n_classes, label_smoothing)
flipped_target = torch.flip(onehot_target, dims=[0])
return lam * onehot_target + (1 - lam) * flipped_target
""" Label smooth """
def label_smooth(target, n_classes: int, label_smoothing=0.1):
# convert to one-hot
batch_size = target.size(0)
target = torch.unsqueeze(target, 1)
soft_target = torch.zeros((batch_size, n_classes), device=target.device)
soft_target.scatter_(1, target, 1)
# label smoothing
soft_target = soft_target * (1 - label_smoothing) + label_smoothing / n_classes
return soft_target
def cross_entropy_loss_with_soft_target(pred, soft_target):
logsoftmax = nn.LogSoftmax()
return torch.mean(torch.sum(- soft_target * logsoftmax(pred), 1))
def cross_entropy_with_label_smoothing(pred, target, label_smoothing=0.1):
soft_target = label_smooth(target, pred.size(1), label_smoothing)
return cross_entropy_loss_with_soft_target(pred, soft_target)
def aanet_loss(pred_disp_pyramid, gt_disp, mask):
#if args.load_pseudo_gt:
if False:
pseudo_gt_disp = sample['pseudo_disp'].cuda()
pseudo_mask = (pseudo_gt_disp > 0) & (pseudo_gt_disp < args.max_disp) & (~mask) # inverse mask
if not mask.any():
return
#if args.highest_loss_only:
if False:
pred_disp_pyramid = [pred_disp_pyramid[-1]] # only the last highest resolution output
disp_loss = 0
pseudo_disp_loss = 0
pyramid_loss = []
pseudo_pyramid_loss = []
# Loss weights
if len(pred_disp_pyramid) == 5:
pyramid_weight = [1 / 3, 2 / 3, 1.0, 1.0, 1.0] # AANet and AANet+
elif len(pred_disp_pyramid) == 4:
pyramid_weight = [1 / 3, 2 / 3, 1.0, 1.0]
elif len(pred_disp_pyramid) == 3:
pyramid_weight = [1.0, 1.0, 1.0] # 1 scale only
elif len(pred_disp_pyramid) == 1:
pyramid_weight = [1.0] # highest loss only
else:
raise NotImplementedError
assert len(pyramid_weight) == len(pred_disp_pyramid)
for k in range(len(pred_disp_pyramid)):
pred_disp = pred_disp_pyramid[k]
weight = pyramid_weight[k]
if pred_disp.size(-1) != gt_disp.size(-1):
pred_disp = pred_disp.unsqueeze(1) # [B, 1, H, W]
pred_disp = F.interpolate(pred_disp, size=(gt_disp.size(-2), gt_disp.size(-1)),
mode='bilinear', align_corners=False) * (gt_disp.size(-1) / pred_disp.size(-1))
pred_disp = pred_disp.squeeze(1) # [B, H, W]
curr_loss = F.smooth_l1_loss(pred_disp[mask], gt_disp[mask],
reduction='mean')
disp_loss += weight * curr_loss
pyramid_loss.append(curr_loss)
# Pseudo gt loss
#if args.load_pseudo_gt:
if False:
pseudo_curr_loss = F.smooth_l1_loss(pred_disp[pseudo_mask], pseudo_gt_disp[pseudo_mask],
reduction='mean')
pseudo_disp_loss += weight * pseudo_curr_loss
pseudo_pyramid_loss.append(pseudo_curr_loss)
total_loss = disp_loss + pseudo_disp_loss
return total_loss
""" BN related """
def clean_num_batch_tracked(net):
for m in net.modules():
if isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
if m.num_batches_tracked is not None:
m.num_batches_tracked.zero_()
def rm_bn_from_net(net):
for m in net.modules():
if isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
m.forward = lambda x: x
""" Network profiling """
def get_net_device(net):
return net.parameters().__next__().device
def count_parameters(net):
total_params = sum(p.numel() for p in net.parameters() if p.requires_grad)
return total_params
def count_net_flops(net, data_shape=(1, 3, 224, 224)):
from flops_counter import profile
if isinstance(net, nn.DataParallel):
net = net.module
flop, _ = profile(copy.deepcopy(net), data_shape)
return flop
def measure_net_latency(net, l_type='gpu8', fast=True, input_shape=(3, 224, 224), clean=False):
if isinstance(net, nn.DataParallel):
net = net.module
# remove bn from graph
rm_bn_from_net(net)
# return `ms`
if 'gpu' in l_type:
l_type, batch_size = l_type[:3], int(l_type[3:])
else:
batch_size = 1
data_shape = [batch_size] + list(input_shape)
if l_type == 'cpu':
if fast:
n_warmup = 5
n_sample = 10
else:
n_warmup = 50
n_sample = 50
if get_net_device(net) != torch.device('cpu'):
if not clean:
print('move net to cpu for measuring cpu latency')
net = copy.deepcopy(net).cpu()
elif l_type == 'gpu':
if fast:
n_warmup = 5
n_sample = 10
else:
n_warmup = 50
n_sample = 50
else:
raise NotImplementedError
images = torch.zeros(data_shape, device=get_net_device(net))
measured_latency = {'warmup': [], 'sample': []}
net.eval()
with torch.no_grad():
for i in range(n_warmup):
inner_start_time = time.time()
net(images)
used_time = (time.time() - inner_start_time) * 1e3 # ms
measured_latency['warmup'].append(used_time)
if not clean:
print('Warmup %d: %.3f' % (i, used_time))
outer_start_time = time.time()
for i in range(n_sample):
net(images)
total_time = (time.time() - outer_start_time) * 1e3 # ms
measured_latency['sample'].append((total_time, n_sample))
return total_time / n_sample, measured_latency
def get_net_info(net, input_shape=(3, 224, 224), measure_latency=None, print_info=True):
net_info = {}
if isinstance(net, nn.DataParallel):
net = net.module
# parameters
net_info['params'] = count_parameters(net) / 1e6
# flops
net_info['flops'] = count_net_flops(net, input_shape) / 1e6
# latencies
latency_types = [] if measure_latency is None else measure_latency.split('#')
for l_type in latency_types:
latency, measured_latency = measure_net_latency(net, l_type, fast=False, input_shape=input_shape)
net_info['%s latency' % l_type] = {
'val': latency,
'hist': measured_latency
}
if print_info:
print(net)
print('Total training params: %.2fM' % (net_info['params']))
print('Total FLOPs: %.2fM' % (net_info['flops']))
for l_type in latency_types:
print('Estimated %s latency: %.3fms' % (l_type, net_info['%s latency' % l_type]['val']))
return net_info
""" optimizer """
def build_optimizer(net_params, opt_type, opt_param, init_lr, weight_decay, no_decay_keys):
if no_decay_keys is not None:
assert isinstance(net_params, list) and len(net_params) == 2
net_params = [
{'params': net_params[0], 'weight_decay': weight_decay},
{'params': net_params[1], 'weight_decay': 0},
]
else:
net_params = [{'params': net_params, 'weight_decay': weight_decay}]
if opt_type == 'sgd':
opt_param = {} if opt_param is None else opt_param
momentum, nesterov = opt_param.get('momentum', 0.9), opt_param.get('nesterov', True)
optimizer = torch.optim.SGD(net_params, init_lr, momentum=momentum, nesterov=nesterov)
elif opt_type == 'adam':
optimizer = torch.optim.Adam(net_params, init_lr)
else:
raise NotImplementedError
return optimizer
""" learning rate schedule """
def calc_learning_rate(epoch, init_lr, n_epochs, batch=0, nBatch=None, lr_schedule_type='cosine'):
if lr_schedule_type == 'cosine':
t_total = n_epochs * nBatch
t_cur = epoch * nBatch + batch
lr = 0.5 * init_lr * (1 + math.cos(math.pi * t_cur / t_total))
elif 'multistep' in lr_schedule_type:
_, step, decay = lr_schedule_type.split('-')
step = int(step)
decay = float(decay)
lr = init_lr * (decay**(epoch//step))
elif lr_schedule_type is None:
lr = init_lr
else:
raise ValueError('do not support: %s' % lr_schedule_type)
return lr