forked from Farama-Foundation/ViZDoom
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning_pytorch.py
executable file
·294 lines (235 loc) · 9.45 KB
/
learning_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# E. Culurciello
# August 2017
from __future__ import division
from __future__ import print_function
from vizdoom import *
import itertools as it
from random import sample, randint, random
from time import time, sleep
import numpy as np
import skimage.color, skimage.transform
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from tqdm import trange
# Q-learning settings
learning_rate = 0.00025
discount_factor = 0.99
epochs = 20
learning_steps_per_epoch = 2000
replay_memory_size = 10000
# NN learning settings
batch_size = 64
# Training regime
test_episodes_per_epoch = 100
# Other parameters
frame_repeat = 12
resolution = (30, 45)
episodes_to_watch = 10
model_savefile = "./model-doom.pth"
save_model = True
load_model = False
skip_learning = False
# Configuration file path
config_file_path = "../../scenarios/simpler_basic.cfg"
# config_file_path = "../../scenarios/rocket_basic.cfg"
# config_file_path = "../../scenarios/basic.cfg"
# Converts and down-samples the input image
def preprocess(img):
img = skimage.transform.resize(img, resolution)
img = img.astype(np.float32)
return img
class ReplayMemory:
def __init__(self, capacity):
channels = 1
state_shape = (capacity, channels, resolution[0], resolution[1])
self.s1 = np.zeros(state_shape, dtype=np.float32)
self.s2 = np.zeros(state_shape, dtype=np.float32)
self.a = np.zeros(capacity, dtype=np.int32)
self.r = np.zeros(capacity, dtype=np.float32)
self.isterminal = np.zeros(capacity, dtype=np.float32)
self.capacity = capacity
self.size = 0
self.pos = 0
def add_transition(self, s1, action, s2, isterminal, reward):
self.s1[self.pos, 0, :, :] = s1
self.a[self.pos] = action
if not isterminal:
self.s2[self.pos, 0, :, :] = s2
self.isterminal[self.pos] = isterminal
self.r[self.pos] = reward
self.pos = (self.pos + 1) % self.capacity
self.size = min(self.size + 1, self.capacity)
def get_sample(self, sample_size):
i = sample(range(0, self.size), sample_size)
return self.s1[i], self.a[i], self.s2[i], self.isterminal[i], self.r[i]
class Net(nn.Module):
def __init__(self, available_actions_count):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 8, kernel_size=6, stride=3)
self.conv2 = nn.Conv2d(8, 8, kernel_size=3, stride=2)
self.fc1 = nn.Linear(192, 128)
self.fc2 = nn.Linear(128, available_actions_count)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = x.view(-1, 192)
x = F.relu(self.fc1(x))
return self.fc2(x)
criterion = nn.MSELoss()
def learn(s1, target_q):
s1 = torch.from_numpy(s1)
target_q = torch.from_numpy(target_q)
s1, target_q = Variable(s1), Variable(target_q)
output = model(s1)
loss = criterion(output, target_q)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss
def get_q_values(state):
state = torch.from_numpy(state)
state = Variable(state)
return model(state)
def get_best_action(state):
q = get_q_values(state)
m, index = torch.max(q, 1)
action = index.data.numpy()[0]
return action
def learn_from_memory():
""" Learns from a single transition (making use of replay memory).
s2 is ignored if s2_isterminal """
# Get a random minibatch from the replay memory and learns from it.
if memory.size > batch_size:
s1, a, s2, isterminal, r = memory.get_sample(batch_size)
q = get_q_values(s2).data.numpy()
q2 = np.max(q, axis=1)
target_q = get_q_values(s1).data.numpy()
# target differs from q only for the selected action. The following means:
# target_Q(s,a) = r + gamma * max Q(s2,_) if isterminal else r
target_q[np.arange(target_q.shape[0]), a] = r + discount_factor * (1 - isterminal) * q2
learn(s1, target_q)
def perform_learning_step(epoch):
""" Makes an action according to eps-greedy policy, observes the result
(next state, reward) and learns from the transition"""
def exploration_rate(epoch):
"""# Define exploration rate change over time"""
start_eps = 1.0
end_eps = 0.1
const_eps_epochs = 0.1 * epochs # 10% of learning time
eps_decay_epochs = 0.6 * epochs # 60% of learning time
if epoch < const_eps_epochs:
return start_eps
elif epoch < eps_decay_epochs:
# Linear decay
return start_eps - (epoch - const_eps_epochs) / \
(eps_decay_epochs - const_eps_epochs) * (start_eps - end_eps)
else:
return end_eps
s1 = preprocess(game.get_state().screen_buffer)
# With probability eps make a random action.
eps = exploration_rate(epoch)
if random() <= eps:
a = randint(0, len(actions) - 1)
else:
# Choose the best action according to the network.
s1 = s1.reshape([1, 1, resolution[0], resolution[1]])
a = get_best_action(s1)
reward = game.make_action(actions[a], frame_repeat)
isterminal = game.is_episode_finished()
s2 = preprocess(game.get_state().screen_buffer) if not isterminal else None
# Remember the transition that was just experienced.
memory.add_transition(s1, a, s2, isterminal, reward)
learn_from_memory()
# Creates and initializes ViZDoom environment.
def initialize_vizdoom(config_file_path):
print("Initializing doom...")
game = DoomGame()
game.load_config(config_file_path)
game.set_window_visible(False)
game.set_mode(Mode.PLAYER)
game.set_screen_format(ScreenFormat.GRAY8)
game.set_screen_resolution(ScreenResolution.RES_640X480)
game.init()
print("Doom initialized.")
return game
if __name__ == '__main__':
# Create Doom instance
game = initialize_vizdoom(config_file_path)
# Action = which buttons are pressed
n = game.get_available_buttons_size()
actions = [list(a) for a in it.product([0, 1], repeat=n)]
# Create replay memory which will store the transitions
memory = ReplayMemory(capacity=replay_memory_size)
if load_model:
print("Loading model from: ", model_savefile)
model = torch.load(model_savefile)
else:
model = Net(len(actions))
optimizer = torch.optim.SGD(model.parameters(), learning_rate)
print("Starting the training!")
time_start = time()
if not skip_learning:
for epoch in range(epochs):
print("\nEpoch %d\n-------" % (epoch + 1))
train_episodes_finished = 0
train_scores = []
print("Training...")
game.new_episode()
for learning_step in trange(learning_steps_per_epoch, leave=False):
perform_learning_step(epoch)
if game.is_episode_finished():
score = game.get_total_reward()
train_scores.append(score)
game.new_episode()
train_episodes_finished += 1
print("%d training episodes played." % train_episodes_finished)
train_scores = np.array(train_scores)
print("Results: mean: %.1f +/- %.1f," % (train_scores.mean(), train_scores.std()), \
"min: %.1f," % train_scores.min(), "max: %.1f," % train_scores.max())
print("\nTesting...")
test_episode = []
test_scores = []
for test_episode in trange(test_episodes_per_epoch, leave=False):
game.new_episode()
while not game.is_episode_finished():
state = preprocess(game.get_state().screen_buffer)
state = state.reshape([1, 1, resolution[0], resolution[1]])
best_action_index = get_best_action(state)
game.make_action(actions[best_action_index], frame_repeat)
r = game.get_total_reward()
test_scores.append(r)
test_scores = np.array(test_scores)
print("Results: mean: %.1f +/- %.1f," % (
test_scores.mean(), test_scores.std()), "min: %.1f" % test_scores.min(),
"max: %.1f" % test_scores.max())
print("Saving the network weigths to:", model_savefile)
torch.save(model, model_savefile)
print("Total elapsed time: %.2f minutes" % ((time() - time_start) / 60.0))
game.close()
print("======================================")
print("Training finished. It's time to watch!")
# Reinitialize the game with window visible
game.set_window_visible(True)
game.set_mode(Mode.ASYNC_PLAYER)
game.init()
for _ in range(episodes_to_watch):
game.new_episode()
while not game.is_episode_finished():
state = preprocess(game.get_state().screen_buffer)
state = state.reshape([1, 1, resolution[0], resolution[1]])
best_action_index = get_best_action(state)
# Instead of make_action(a, frame_repeat) in order to make the animation smooth
game.set_action(actions[best_action_index])
for _ in range(frame_repeat):
game.advance_action()
# Sleep between episodes
sleep(1.0)
score = game.get_total_reward()
print("Total score: ", score)