-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
121 lines (93 loc) · 3.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import cv2
import random
import numpy as np
import torch
import argparse
from shutil import copyfile
from tune_parameters import randomTune
from src.config import Config
from src.process import CLFNet
from src.utils import *
import os
def main(mode=None):
r"""starts the model
Args:
mode (int): 1: train, 2: test, 3: eval, reads from config file if not specified
"""
config = load_config(mode)
# set cuda visble devices from config file
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(str(e) for e in config.GPU)
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# init device
if torch.cuda.is_available():
config.DEVICE = torch.device("cuda")
torch.backends.cudnn.benchmark = True # cudnn auto-tuner
else:
config.DEVICE = torch.device("cpu")
# set cv2 running threads to 1 (prevents deadlocks with pytorch dataloader)
cv2.setNumThreads(0)
# initialize random seed
torch.manual_seed(config.SEED)
torch.cuda.manual_seed_all(config.SEED)
np.random.seed(config.SEED)
random.seed(config.SEED)
# tune parameters
# randomT0une(config)
# build the model and initialize
model = CLFNet(config)
model.load()
# model training
if config.MODE == 1:
# config.print()
print('\nstart training...\n')
model.train()
# model test
elif config.MODE == 2:
print('\nstart testing...\n')
model.test()
# eval mode
else:
print('\nstart eval...\n')
model.eval(0)
def load_config(mode=None):
r"""loads model config
Args:
mode (int): 1: train, 2: test, 3: eval, reads from config file if not specified
"""
parser = argparse.ArgumentParser()
parser.add_argument('--path', '--checkpoints', type=str, default='./checkpoints',
help='model checkpoints path (default: ./checkpoints)')
parser.add_argument('--output', type=str, default='./output', help='path to the output directory')
# test mode
if mode == 2:
parser.add_argument('--input', type=str, help='path to the input images directory or an input image')
parser.add_argument('--mask', type=str, help='path to the masks directory or a mask file')
args = parser.parse_args()
config_path = os.path.join(args.path, 'config.yml')
# create checkpoints path if does't exist
create_dir(args.path)
# copy config template if does't exist
if not os.path.exists(config_path):
copyfile('./config.yml.example', config_path)
# load config file
config = Config(config_path)
# train mode
if mode == 1:
config.MODE = 1
# test mode
elif mode == 2:
config.MODE = 2
# config.INPUT_SIZE = 0 Set to 0 for one to one mapping
if args.input is not None:
config.TEST_FLIST = args.input
if args.mask is not None:
config.TEST_MASK_FLIST = args.mask
if args.output is not None:
config.RESULTS = args.output
# eval mode
elif mode == 3:
config.MODE = 3
return config
if __name__ == "__main__":
main()