forked from ptwobrussell/Recipes-for-Mining-Twitter
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrecipe__geocode_profile_locations.py
159 lines (111 loc) · 4.95 KB
/
recipe__geocode_profile_locations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# -*- coding: utf-8 -*-
# XXX: See also https://dev.twitter.com/docs/platform-objects/places
import sys
import os
from urllib2 import HTTPError
import geopy
from recipe__oauth_login import oauth_login
from recipe__analyze_users_in_search_results import analyze_users_in_search_results
def geocode_locations(geocoder, locations):
# Some basic replacement transforms may be necessary for geocoding services to
# function properly. You may probably need to add your own as you encounter rough
# edges in the data or with the geocoding service you settle on. For example, ...
replacement_transforms = [('San Francisco Bay', 'San Francisco')]
location_to_coords = {}
location_to_description = {}
for location in locations:
if location is None:
continue
# Avoid unnecessary I/O with a simple cache
if location_to_coords.has_key(location):
continue
xformed_location = location
for transform in replacement_transforms:
xformed_location = xformed_location.replace(*transform)
while True:
num_errors = 0
results = []
try:
# This call returns a generator
results = geocoder.geocode(xformed_location, exactly_one=False)
break
except HTTPError, e:
num_errors += 1
if num_errors >= MAX_HTTP_ERRORS:
sys.exit()
print >> sys.stderr, e.message
print >> sys.stderr, 'A urllib2 error. Retrying...'
except UnicodeEncodeError, e:
print >> sys.stderr, e
print >> sys.stderr, 'A UnicodeEncodeError...', e.message
break
except geopy.geocoders.google.GQueryError, e:
print >> sys.stderr, e
print >> sys.stderr, 'A GQueryError', e.message
break
for result in results:
# Each result is of the form ("Description", (X,Y))
# Unless you have a some special logic for picking the best of many
# possible results, choose the first one returned in results and move
# along
location_to_coords[location] = result[1]
location_to_description[location] = result[0]
break
# Use location_to_coords and other information of interest to populate a
# visualization. Depending on your particular needs, it is highly likely that
# you'll want to further post process the geocoded locations to filter out
# location such as "U.S.A." which will plot a placemarker in the geographic
# center of the United States yet make the visualization look skewed in favor
# of places like Oklahoma, for example.
return location_to_coords, location_to_description
def build_kml(title, location2coords):
# There are certainly more robust ways to build XML, ut the following approach
# does the job
# Substitute a title and list of placemarks into the main KML template
kml_template = """<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://earth.google.com/kml/2.0">
<Folder>
<name>%s</name>
%s
</Folder>
</kml>"""
# Substitute (name, lon, lat) tuples into placemark templates
placemark_template = """<Placemark>
<Style>
<LineStyle>
<color>cc0000ff</color>
<width>5.0</width>
</LineStyle>
</Style>
<name>%s</name>
<Point>
<coordinates>%s,%s,0</coordinates>
</Point>
</Placemark>"""
placemarks = []
for name, [lat, lon] in location2coords.items():
placemarks += [placemark_template % (name, lon, lat,)]
return kml_template % (title, '\n'.join(placemarks),)
if __name__ == '__main__':
# Use your own API key here if you use a geocoding service
# such as Google or Yahoo!
GEOCODING_API_KEY = sys.argv[1]
Q = ' '.join(sys.argv[2:])
MAX_HTTP_ERRORS = 100
g = geopy.geocoders.Google(GEOCODING_API_KEY)
# Don't forget to pass in keyword parameters if you don't have
# a token file stored to disk
t = oauth_login()
# This function returns a few useful maps. Let's use the
# screen_name => location map and geocode the locations
_, screen_name_to_location, _ = analyze_users_in_search_results(t, Q, max_pages=1)
locations = screen_name_to_location.values()
location2coords, location2description = geocode_locations(g, locations)
# Doing something interesting like building up some KML to visualize in Google Earth/Maps
# just involves some simple string munging...
kml = build_kml("Geocoded user profiles for Twitter search results for " + Q, location2coords)
if not os.path.isdir('out'):
os.mkdir('out')
f = open(os.path.join(os.getcwd(), 'out', Q + ".kml"), 'w')
f.write(kml)
f.close()