-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathelasticsearch_to_gcs.py
188 lines (162 loc) · 7.35 KB
/
elasticsearch_to_gcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Sequence, Optional, Any
from logging import Logger
import argparse
import pprint
import sys
from pyspark.sql import SparkSession, DataFrameWriter
from dataproc_templates import BaseTemplate
from dataproc_templates.util.argument_parsing import add_spark_options, add_es_spark_connector_options
from dataproc_templates.util.dataframe_writer_wrappers import persist_dataframe_to_cloud_storage
from dataproc_templates.util.dataframe_reader_wrappers import ingest_dataframe_from_elasticsearch
from dataproc_templates.util.elasticsearch_transformations import flatten_struct_fields, flatten_array_fields
import dataproc_templates.util.template_constants as constants
__all__ = ['ElasticsearchToGCSTemplate']
class ElasticsearchToGCSTemplate(BaseTemplate):
"""
Dataproc template implementing exports from Elasticsearch to Cloud Storage
"""
@staticmethod
def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]:
parser: argparse.ArgumentParser = argparse.ArgumentParser()
parser.add_argument(
f'--{constants.ES_GCS_INPUT_NODE}',
dest=constants.ES_GCS_INPUT_NODE,
required=True,
help='Elasticsearch Node Uri'
)
parser.add_argument(
f'--{constants.ES_GCS_INPUT_INDEX}',
dest=constants.ES_GCS_INPUT_INDEX,
required=True,
help='Elasticsearch Index Name'
)
parser.add_argument(
f'--{constants.ES_GCS_NODE_USER}',
dest=constants.ES_GCS_NODE_USER,
help='Elasticsearch Node User'
)
parser.add_argument(
f'--{constants.ES_GCS_NODE_PASSWORD}',
dest=constants.ES_GCS_NODE_PASSWORD,
help='Elasticsearch Node Password'
)
parser.add_argument(
f'--{constants.ES_GCS_NODE_API_KEY}',
dest=constants.ES_GCS_NODE_API_KEY,
help='Elasticsearch Node API Key'
)
add_es_spark_connector_options(parser, constants.get_es_spark_connector_input_options("es.gcs.input."))
parser.add_argument(
f'--{constants.ES_GCS_FLATTEN_STRUCT}',
dest=constants.ES_GCS_FLATTEN_STRUCT,
action='store_true',
required=False,
help='Flatten the struct fields'
)
parser.add_argument(
f'--{constants.ES_GCS_FLATTEN_ARRAY}',
dest=constants.ES_GCS_FLATTEN_ARRAY,
action='store_true',
required=False,
help=(
'Flatten the n-D array fields to 1-D array fields,'
f' it needs {constants.ES_GCS_FLATTEN_STRUCT} argument to be passed'
)
)
parser.add_argument(
f'--{constants.ES_GCS_OUTPUT_FORMAT}',
dest=constants.ES_GCS_OUTPUT_FORMAT,
required=True,
help='Output file format (one of: avro,parquet,csv,json)',
choices=[
constants.FORMAT_AVRO,
constants.FORMAT_PRQT,
constants.FORMAT_CSV,
constants.FORMAT_JSON
]
)
parser.add_argument(
f'--{constants.ES_GCS_OUTPUT_LOCATION}',
dest=constants.ES_GCS_OUTPUT_LOCATION,
required=True,
help='Cloud Storage location for output files'
)
parser.add_argument(
f'--{constants.ES_GCS_OUTPUT_MODE}',
dest=constants.ES_GCS_OUTPUT_MODE,
required=False,
default=constants.OUTPUT_MODE_APPEND,
help=(
'Output write mode '
'(one of: append,overwrite,ignore,errorifexists) '
'(Defaults to append)'
),
choices=[
constants.OUTPUT_MODE_OVERWRITE,
constants.OUTPUT_MODE_APPEND,
constants.OUTPUT_MODE_IGNORE,
constants.OUTPUT_MODE_ERRORIFEXISTS
]
)
add_spark_options(parser, constants.get_csv_output_spark_options("es.gcs.output."))
known_args: argparse.Namespace
known_args, _ = parser.parse_known_args(args)
if (not getattr(known_args, constants.ES_GCS_NODE_API_KEY)
and (not getattr(known_args, constants.ES_GCS_NODE_USER)
or not getattr(known_args, constants.ES_GCS_NODE_PASSWORD))):
sys.exit("ArgumentParser Error: Either of es.gcs.input.user and es.gcs.input.password "
+ "OR es.gcs.input.api.key needs to be provided as argument to read data from Elasticsearch")
elif (getattr(known_args, constants.ES_GCS_NODE_API_KEY)
and (getattr(known_args, constants.ES_GCS_NODE_USER)
or getattr(known_args, constants.ES_GCS_NODE_PASSWORD))):
sys.exit("ArgumentParser Error: Both es.gcs.input.user and es.gcs.input.password "
+ "AND es.gcs.input.api.key cannot be provided as arguments at the same time.")
return vars(known_args)
def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:
logger: Logger = self.get_logger(spark=spark)
# Arguments
es_node: str = args[constants.ES_GCS_INPUT_NODE]
es_index: str = args[constants.ES_GCS_INPUT_INDEX]
es_user: str = args[constants.ES_GCS_NODE_USER]
es_password: str = args[constants.ES_GCS_NODE_PASSWORD]
es_api_key: str = args[constants.ES_GCS_NODE_API_KEY]
flatten_struct = args[constants.ES_GCS_FLATTEN_STRUCT]
flatten_array = args[constants.ES_GCS_FLATTEN_ARRAY]
output_format: str = args[constants.ES_GCS_OUTPUT_FORMAT]
output_mode: str = args[constants.ES_GCS_OUTPUT_MODE]
output_location: str = args[constants.ES_GCS_OUTPUT_LOCATION]
ignore_keys = {constants.ES_GCS_NODE_PASSWORD, constants.ES_GCS_NODE_API_KEY}
filtered_args = {key:val for key,val in args.items() if key not in ignore_keys}
logger.info(
"Starting ElasticSearch to Cloud Storage Spark job with parameters:\n"
f"{pprint.pformat(filtered_args)}"
)
# Read
input_data = ingest_dataframe_from_elasticsearch(
spark, es_node, es_index, es_user, es_password, es_api_key, args, "es.gcs.input."
)
if flatten_struct:
# Flatten the Struct Fields
input_data = flatten_struct_fields(input_data)
if flatten_array:
# Flatten the n-D array fields to 1-D array fields
input_data = flatten_array_fields(input_data)
if not input_data.head(1):
logger.info("No records in dataframe, Skipping the GCS Load")
return
# Write
writer: DataFrameWriter = input_data.write.mode(output_mode)
persist_dataframe_to_cloud_storage(writer, args, output_location, output_format, "es.gcs.output.")