-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathbigquery_to_gcs.py
123 lines (105 loc) · 4.43 KB
/
bigquery_to_gcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Sequence, Optional, Any
from logging import Logger
import argparse
import pprint
from pyspark.sql import SparkSession, DataFrameWriter
from dataproc_templates import BaseTemplate
from dataproc_templates.util.argument_parsing import add_spark_options
from dataproc_templates.util.dataframe_writer_wrappers import persist_dataframe_to_cloud_storage
import dataproc_templates.util.template_constants as constants
__all__ = ['BigQueryToGCSTemplate']
class BigQueryToGCSTemplate(BaseTemplate):
"""
Dataproc template implementing exports from BigQuery to Cloud Storage
"""
@staticmethod
def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]:
parser: argparse.ArgumentParser = argparse.ArgumentParser()
parser.add_argument(
f'--{constants.BQ_GCS_INPUT_TABLE}',
dest=constants.BQ_GCS_INPUT_TABLE,
required=True,
help='BigQuery Input table name'
)
parser.add_argument(
f'--{constants.BQ_GCS_OUTPUT_FORMAT}',
dest=constants.BQ_GCS_OUTPUT_FORMAT,
required=True,
help='Output file format (one of: avro,parquet,csv,json)',
choices=[
constants.FORMAT_AVRO,
constants.FORMAT_PRQT,
constants.FORMAT_CSV,
constants.FORMAT_JSON
]
)
parser.add_argument(
f'--{constants.BQ_GCS_OUTPUT_LOCATION}',
dest=constants.BQ_GCS_OUTPUT_LOCATION,
required=True,
help='Cloud Storage location for output files'
)
parser.add_argument(
f'--{constants.BQ_GCS_OUTPUT_PARTITION_COLUMN}',
dest=constants.BQ_GCS_OUTPUT_PARTITION_COLUMN,
required=False,
default="",
help='Partition column name to partition the final output in destination bucket'
)
parser.add_argument(
f'--{constants.BQ_GCS_OUTPUT_MODE}',
dest=constants.BQ_GCS_OUTPUT_MODE,
required=False,
default=constants.OUTPUT_MODE_APPEND,
help=(
'Output write mode '
'(one of: append,overwrite,ignore,errorifexists) '
'(Defaults to append)'
),
choices=[
constants.OUTPUT_MODE_OVERWRITE,
constants.OUTPUT_MODE_APPEND,
constants.OUTPUT_MODE_IGNORE,
constants.OUTPUT_MODE_ERRORIFEXISTS
]
)
add_spark_options(parser, constants.get_csv_output_spark_options("bigquery.gcs.output."))
known_args: argparse.Namespace
known_args, _ = parser.parse_known_args(args)
return vars(known_args)
def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:
logger: Logger = self.get_logger(spark=spark)
# Arguments
input_table: str = args[constants.BQ_GCS_INPUT_TABLE]
output_mode: str = args[constants.BQ_GCS_OUTPUT_MODE]
output_partition_column: str = args[constants.BQ_GCS_OUTPUT_PARTITION_COLUMN]
output_location: str = args[constants.BQ_GCS_OUTPUT_LOCATION]
output_format: str = args[constants.BQ_GCS_OUTPUT_FORMAT]
logger.info(
"Starting Bigquery to Cloud Storage Spark job with parameters:\n"
f"{pprint.pformat(args)}"
)
# Read
input_data = spark.read \
.format(constants.FORMAT_BIGQUERY) \
.option(constants.TABLE, input_table) \
.load()
# Write
if output_partition_column:
writer: DataFrameWriter = input_data.write.mode(output_mode).partitionBy(output_partition_column)
else:
writer: DataFrameWriter = input_data.write.mode(output_mode)
persist_dataframe_to_cloud_storage(writer, args, output_location, output_format, "bigquery.gcs.output.")