Skip to content

Latest commit

 

History

History

dataproc

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Google Cloud Dataproc

This module Manages a Google Cloud Dataproc cluster resource, including IAM.

TODO

Examples

Simple

module "dataproc-cluster" {
  source     = "./fabric/modules/dataproc"
  project_id = var.project_id
  name       = "my-cluster"
  region     = var.region
}
# tftest modules=1 resources=1

Cluster configuration on GCE

To set cluster configuration use the 'dataproc_config.cluster_config' variable. If you don't want to use dedicated service account, remember to grant roles/dataproc.worker to Compute Default Service Account.

module "dataproc-service-account" {
  source     = "./fabric/modules/iam-service-account"
  project_id = var.project_id
  name       = "dataproc-worker"
  iam_project_roles = {
    (var.project_id) = ["roles/dataproc.worker"]
  }
}

module "firewall" {
  source     = "./fabric/modules/net-vpc-firewall"
  project_id = var.project_id
  network    = var.vpc.name
  ingress_rules = {
    allow-ingress-dataproc = {
      description = "Allow all traffic between Dataproc nodes."
      targets     = ["dataproc"]
      sources     = ["dataproc"]
    }
  }
}

module "processing-dp-cluster" {
  source     = "./fabric/modules/dataproc"
  project_id = var.project_id
  name       = "my-cluster"
  region     = var.region
  dataproc_config = {
    cluster_config = {
      gce_cluster_config = {
        internal_ip_only       = true
        service_account        = module.dataproc-service-account.email
        service_account_scopes = ["cloud-platform"]
        subnetwork             = var.subnet.self_link
        tags                   = ["dataproc"]
        zone                   = "${var.region}-b"
      }
    }
  }
  depends_on = [
    module.dataproc-service-account, # ensure all grants are done before creating the cluster
  ]
}
# tftest modules=3 resources=7 e2e

Cluster configuration on GCE with CMEK encryption

To set cluster configuration use the Customer Managed Encryption key, set dataproc_config.encryption_config. variable. The Compute Engine service agent and the Cloud Storage service agent need to have CryptoKey Encrypter/Decrypter role on they configured KMS key (Documentation).

module "project" {
  source          = "./fabric/modules/project"
  name            = "dataproc"
  billing_account = var.billing_account_id
  prefix          = var.prefix
  parent          = var.folder_id
  services = [
    "cloudkms.googleapis.com",
    "dataproc.googleapis.com",
    "servicenetworking.googleapis.com",
  ]
}

module "kms" {
  source     = "./fabric/modules/kms"
  project_id = module.project.project_id
  keyring = {
    location = var.region
    name     = "keyring"
  }
  keys = {
    "key-regional" = {
    }
  }
  iam = {
    "roles/cloudkms.cryptoKeyEncrypterDecrypter" = [
      module.project.service_agents.dataproc.iam_email
    ]
  }
}

module "vpc" {
  source     = "./fabric/modules/net-vpc"
  project_id = module.project.project_id
  name       = "my-network"
  subnets = [
    {
      ip_cidr_range = "10.0.0.0/24"
      name          = "production"
      region        = var.region
    },
  ]
  psa_configs = [{
    ranges = { myrange = "10.0.1.0/24" }
  }]
}

module "dataproc-service-account" {
  source     = "./fabric/modules/iam-service-account"
  project_id = module.project.project_id
  name       = "dataproc-worker"
  iam_project_roles = {
    (module.project.project_id) = ["roles/dataproc.worker", "roles/cloudkms.cryptoKeyEncrypterDecrypter"]
  }
}

module "firewall" {
  source     = "./fabric/modules/net-vpc-firewall"
  project_id = module.project.project_id
  network    = module.vpc.name
  ingress_rules = {
    allow-ingress-dataproc = {
      description = "Allow all traffic between Dataproc nodes."
      targets     = ["dataproc"]
      sources     = ["dataproc"]
    }
  }
}

module "processing-dp-cluster" {
  source     = "./fabric/modules/dataproc"
  project_id = module.project.project_id
  name       = "my-cluster"
  region     = var.region
  dataproc_config = {
    cluster_config = {
      gce_cluster_config = {
        internal_ip_only       = true
        service_account        = module.dataproc-service-account.email
        service_account_scopes = ["cloud-platform"]
        subnetwork             = module.vpc.subnet_self_links["${var.region}/production"]
        tags                   = ["dataproc"]
        zone                   = "${var.region}-b"
      }
    }
    encryption_config = {
      kms_key_name = module.kms.keys.key-regional.id
    }
  }
}
# tftest modules=6 resources=28 e2e

Cluster configuration on GKE

To set cluster configuration GKE use the 'dataproc_config.virtual_cluster_config' variable. This example shows usage of dedicated Service Account.

locals {
  dataproc_namespace = "foobar"
}

module "dataproc-service-account" {
  source     = "./fabric/modules/iam-service-account"
  project_id = var.project_id
  name       = "dataproc-worker"
  iam = {
    "roles/iam.workloadIdentityUser" = [
      "serviceAccount:${var.project_id}.svc.id.goog[${local.dataproc_namespace}/agent]",
      "serviceAccount:${var.project_id}.svc.id.goog[${local.dataproc_namespace}/spark-driver]",
      "serviceAccount:${var.project_id}.svc.id.goog[${local.dataproc_namespace}/spark-executor]"
    ]
  }
  iam_project_roles = {
    (var.project_id) = ["roles/dataproc.worker"]
  }
  depends_on = [
    module.gke-cluster-standard, # granting workloadIdentityUser requires cluster/pool to be created first
  ]
}

module "processing-dp-cluster" {
  source     = "./fabric/modules/dataproc"
  project_id = var.project_id
  name       = "my-dataproc-cluster"
  region     = var.region
  dataproc_config = {
    virtual_cluster_config = {
      kubernetes_cluster_config = {
        kubernetes_namespace = local.dataproc_namespace
        kubernetes_software_config = {
          component_version = {
            "SPARK" : "3.1-dataproc-14"
          }
          properties = {
            "dataproc:dataproc.gke.agent.google-service-account"          = module.dataproc-service-account.email
            "dataproc:dataproc.gke.spark.driver.google-service-account"   = module.dataproc-service-account.email
            "dataproc:dataproc.gke.spark.executor.google-service-account" = module.dataproc-service-account.email
          }
        }
        gke_cluster_config = {
          gke_cluster_target = module.gke-cluster-standard.id
          node_pool_target = {
            node_pool = "node-pool-name"
            roles     = ["DEFAULT"]
          }
        }
      }
    }
  }
}
# tftest modules=4 resources=6 fixtures=fixtures/gke-cluster-standard.tf e2e

IAM

IAM is managed via several variables that implement different features and levels of control:

  • iam and iam_by_principals configure authoritative bindings that manage individual roles exclusively, and are internally merged
  • iam_bindings configure authoritative bindings with optional support for conditions, and are not internally merged with the previous two variables
  • iam_bindings_additive configure additive bindings via individual role/member pairs with optional support conditions

The authoritative and additive approaches can be used together, provided different roles are managed by each. Some care must also be taken with the iam_by_principals variable to ensure that variable keys are static values, so that Terraform is able to compute the dependency graph.

Refer to the project module for examples of the IAM interface.

Authoritative IAM

module "processing-dp-cluster" {
  source     = "./fabric/modules/dataproc"
  project_id = var.project_id
  name       = "my-cluster"
  region     = var.region
  iam_by_principals = {
    "group:[email protected]" = [
      "roles/dataproc.viewer"
    ]
  }
  iam = {
    "roles/dataproc.viewer" = [
      "serviceAccount:service-account@PROJECT_ID.iam.gserviceaccount.com"
    ]
  }
}
# tftest modules=1 resources=2

Additive IAM

module "processing-dp-cluster" {
  source     = "./fabric/modules/dataproc"
  project_id = var.project_id
  name       = "my-cluster"
  region     = var.region
  iam_bindings_additive = {
    am1-viewer = {
      member = "user:[email protected]"
      role   = "roles/dataproc.viewer"
    }
  }
}
# tftest modules=1 resources=2

Variables

name description type required default
name Cluster name. string
project_id Project ID. string
region Dataproc region. string
dataproc_config Dataproc cluster config. object({…}) {}
iam IAM bindings in {ROLE => [MEMBERS]} format. map(list(string)) {}
iam_bindings Authoritative IAM bindings in {KEY => {role = ROLE, members = [], condition = {}}}. Keys are arbitrary. map(object({…})) {}
iam_bindings_additive Individual additive IAM bindings. Keys are arbitrary. map(object({…})) {}
iam_by_principals Authoritative IAM binding in {PRINCIPAL => [ROLES]} format. Principals need to be statically defined to avoid cycle errors. Merged internally with the iam variable. map(list(string)) {}
labels The resource labels for instance to use to annotate any related underlying resources, such as Compute Engine VMs. map(string) {}

Outputs

name description sensitive
id Fully qualified cluster id.
name The name of the cluster.

Fixtures