forked from yuanming-hu/exposure
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pdf_sample_layer.py
executable file
·83 lines (60 loc) · 2.15 KB
/
pdf_sample_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import tensorflow as tf
import numpy as np
def pdf_sample(pdf, uniform_noise):
pdf = pdf / (tf.reduce_sum(pdf, axis=1, keep_dims=True) + 1e-36)
cdf = tf.cumsum(pdf, axis=1, exclusive=True)
indices = tf.reduce_sum(
tf.cast(tf.less(cdf, uniform_noise), tf.int32), axis=1) - 1
return indices
def pdf_sample_2d(pdf, uniform_noise):
height, width = pdf.get_shape()[1], pdf.get_shape()[2]
pdf = tf.reshape(pdf, (int(pdf.get_shape()[0]), -1))
indices_1d = pdf_sample(pdf, uniform_noise)
indices = tf.stack(
[tf.clip_by_value(indices_1d / width, 0, height - 1), indices_1d % width],
axis=1)
return indices
def test1():
import cv2
batch_size = 1024
img = cv2.imread('data/doggy.jpg').mean(axis=2)
pdf_batch = np.empty(
shape=(batch_size, img.shape[0], img.shape[1]), dtype=np.float32)
for i in range(batch_size):
pdf_batch[i] = img
pdf = tf.placeholder(tf.float32, (batch_size, img.shape[0], img.shape[1]))
noise = tf.placeholder(tf.float32, (batch_size, 1))
with tf.Session() as sess:
indices = pdf_sample_2d(pdf, noise)
image_buffer = np.zeros(
shape=(img.shape[0], img.shape[1]), dtype=np.float32)
while True:
indices_out = sess.run(
indices,
feed_dict={pdf: pdf_batch,
noise: np.random.rand(batch_size, 1)})
for ind in indices_out:
image_buffer[ind[0]][ind[1]] += 1
cv2.imshow('img', image_buffer / np.max(image_buffer))
cv2.waitKey(30)
def test2():
batch_size = 1024
n = 3
pdf_batch = [[2.0**i for i in range(1, n + 1)] for _ in range(batch_size)]
pdf = tf.placeholder(tf.float32, (batch_size, n))
noise = tf.placeholder(tf.float32, (batch_size, 1))
counter = [0 for _ in range(n)]
with tf.Session() as sess:
indices = pdf_sample(pdf_batch, noise)
for i in range(1000):
indices_out = sess.run(
indices,
feed_dict={pdf: pdf_batch,
noise: np.random.rand(batch_size, 1)})
for i in indices_out:
counter[indices_out[i]] += 1
for i in range(n):
print(counter[i] * 1.0 / 100 / batch_size)
if __name__ == '__main__':
test2()
# test()