Skip to content

Speech recognition module for Python, supporting CMU Sphinx, Google Speech Recognition, Wit.ai, IBM Speech to Text, and AT&T Speech to Text.

License

Notifications You must be signed in to change notification settings

GitKraug/speech_recognition

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Speech Recognition

Downloads Latest Version Development Status Supported Python Versions License

Library for performing speech recognition with support for CMU Sphinx, Google Speech Recognition, Wit.ai, IBM Speech to Text, and AT&T Speech to Text.

Quickstart: pip install SpeechRecognition. See the "Installing" section for more details.

To quickly try it out, run python -m speech_recognition after installing.

Project links:

Library Reference

The library reference documents every publicly accessible object in the library. This document is also included under reference/library-reference.rst.

See Notes on using PocketSphinx for information about installing languages, compiling PocketSphinx, and building language packs from online resources. This document is also included under reference/pocketsphinx.rst.

Examples

See the examples/ directory for usage examples:

Installing

First, make sure you have all the requirements listed in the "Requirements" section.

The easiest way to install this is using pip install SpeechRecognition.

Otherwise, download the source distribution from PyPI, and extract the archive.

In the folder, run python setup.py install.

Requirements

In summary, this library requires:

  • Python 2.6, 2.7, or 3.3+
  • PyAudio 0.2.9+ (required only if you need to use microphone input)
  • PocketSphinx (required only if you need to use the Sphinx recognizer)
  • FLAC encoder (required only if the system is not x86-based Windows/Linux/OS X)

Python

The first software requirement is Python 2.6, 2.7, or Python 3.3+. This is required to use the library.

PyAudio (for microphone users)

If you want to use audio input from microphones, PyAudio is also necessary. Version 0.2.9+ is required in order to avoid overflow issues with recording on certain machines.

If not installed, everything in the library will still work, except attempting to instantiate a Microphone object will throw an AttributeError.

The installation instructions are quite good as of PyAudio v0.2.9. For convenience, they are summarized below:

  • On Windows, install PyAudio using Pip: execute pip install pyaudio in a terminal.
  • On Debian-derived Linux distributions (like Ubuntu and Mint), install PyAudio using APT: execute sudo apt-get install python-pyaudio python3-pyaudio in a terminal.
    • If the version in the repositories is too old, install the latest release using Pip: execute sudo apt-get install portaudio19-dev python-all-dev python3-all-dev && sudo pip install pyaudio (replace pip with pip3 if using Python 3).
  • On OS X, install PortAudio using Homebrew: brew install portaudio. Then, install PyAudio using Pip: pip install pyaudio.
  • On other POSIX-based systems, install the portaudio19-dev and python-all-dev (or python3-all-dev if using Python 3) packages (or their closest equivalents) using a package manager of your choice, and then install PyAudio using Pip: pip install pyaudio (replace pip with pip3 if using Python 3).

PyAudio wheel packages for 64-bit Python 2.7, 3.4, and 3.5 on Windows and Linux are included for convenience, under the third-party/ directory. To install, simply run pip install wheel followed by pip install ./third-party/WHEEL_FILENAME (replace pip with pip3 if using Python 3) in the project root directory.

PocketSphinx-Python (for Sphinx users)

PocketSphinx-Python is required if and only if you want to use the Sphinx recognizer (recognizer_instance.recognize_sphinx).

PocketSphinx-Python wheel packages for 64-bit Python 2.7, 3.4, and 3.5 on Windows and Linux are included for convenience, under the third-party/ directory. To install, simply run pip install wheel followed by pip install ./third-party/WHEEL_FILENAME (replace pip with pip3 if using Python 3) in the SpeechRecognition folder.

Note that the versions available in most package repositories are outdated and will not work with the bundled language data. Using the bundled wheel packages or building from source is recommended.

See Notes on using PocketSphinx for information about installing languages, compiling PocketSphinx, and building language packs from online resources. This document is also included under reference/pocketsphinx.rst.

FLAC (for some systems)

A FLAC encoder is required to encode the audio data to send to the API. If using Windows, OS X, or Linux on an i385-compatible architecture, the encoder is already bundled with this library - you do not need to install anything else.

Otherwise, ensure that you have the flac command line tool, which is often available through the system package manager.

Troubleshooting

The recognizer tries to recognize speech even when I'm not speaking.

Try increasing the recognizer_instance.energy_threshold property. This is basically how sensitive the recognizer is to when recognition should start. Higher values mean that it will be less sensitive, which is useful if you are in a loud room.

This value depends entirely on your microphone or audio data. There is no one-size-fits-all value, but good values typically range from 50 to 4000.

The recognizer can't recognize speech right after it starts listening for the first time.

The recognizer_instance.energy_threshold property is probably set to a value that is too high to start off with, and then being adjusted lower automatically by dynamic energy threshold adjustment. Before it is at a good level, the energy threshold is so high that speech is just considered ambient noise.

The solution is to decrease this threshold, or call recognizer_instance.adjust_for_ambient_noise beforehand, which will set the threshold to a good value automatically.

The recognizer doesn't understand my particular language/dialect.

Try setting the recognition language to your language/dialect. To do this, see the documentation for recognizer_instance.recognize_sphinx, recognizer_instance.recognize_google, recognizer_instance.recognize_wit, recognizer_instance.recognize_ibm, and recognizer_instance.recognize_att.

For example, if your language/dialect is British English, it is better to use "en-GB" as the language rather than "en-US".

The code examples throw UnicodeEncodeError: 'ascii' codec can't encode character when run.

When you're using Python 2, and your language uses non-ASCII characters, and the terminal or file-like object you're printing to only supports ASCII, an error is thrown when trying to write non-ASCII characters.

This is because in Python 2, recognizer_instance.recognize_sphinx, recognizer_instance.recognize_google, recognizer_instance.recognize_wit, recognizer_instance.recognize_ibm, and recognizer_instance.recognize_att return unicode strings (u"something") rather than byte strings ("something"). In Python 3, all strings are unicode strings.

To make printing of unicode strings work in Python 2 as well, replace all print statements in your code of the following form:

print SOME_UNICODE_STRING

With the following:

print SOME_UNICODE_STRING.encode("utf8")

This change, however, will prevent the code from working in Python 3.

The program doesn't run when compiled with PyInstaller.

As of PyInstaller version 3.0, SpeechRecognition is supported out of the box. If you're getting weird issues when compiling your program using PyInstaller, simply update PyInstaller.

You can easily do this by running pip install --upgrade pyinstaller.

On Ubuntu/Debian, I get errors like "jack server is not running or cannot be started" or "Cannot lock down [...] byte memory area (Cannot allocate memory)".

The Linux audio stack is pretty fickle. There are a few things that can cause these issues.

First, make sure JACK is installed - to install it, run sudo apt-get install multimedia-jack

You will then want to configure the JACK daemon correctly to avoid that "Cannot allocate memory" error. Run sudo dpkg-reconfigure -p high jackd2 and select "Yes" to do so.

Now, you will want to make sure your current user is in the audio group. You can add your current user to this group by running sudo adduser $(whoami) audio.

Unfortunately, these changes will require you to reboot before they take effect.

After rebooting, run pulseaudio --kill, followed by jack_control start, to fix the "jack server is not running or cannot be started" error.

On Ubuntu/Debian, I get annoying output in the terminal saying things like "bt_audio_service_open: [...] Connection refused" and various others.

The "bt_audio_service_open" error means that you have a Bluetooth audio device, but as a physical device is not currently connected, we can't actually use it - if you're not using a Bluetooth microphone, then this can be safely ignored. If you are, and audio isn't working, then double check to make sure your microphone is actually connected. There does not seem to be a simple way to disable these messages.

For errors of the form "ALSA lib [...] Unknown PCM", see this StackOverflow answer. Basically, to get rid of an error of the form "Unknown PCM cards.pcm.rear", simply comment out pcm.rear cards.pcm.rear in /usr/share/alsa/alsa.conf, ~/.asoundrc, and /etc/asound.conf.

On OS X, I get a ChildProcessError saying that it couldn't find the system FLAC converter, even though it's installed.

Installing [FLAC for OS X](https://xiph.org/flac/download.html) directly from the source code will not work, since it doesn't correctly add the executables to the search path.

Installing FLAC using [Homebrew](http://brew.sh/) ensures that the search path is correctly updated. First, ensure you have Homebrew, then run brew install flac to install the necessary files.

Developing

To hack on this library, first make sure you have all the requirements listed in the "Requirements" section.

  • Most of the library code lives in speech_recognition/__init__.py.
  • Examples live under the examples/ directory, and the demo script lives in speech_recognition/__main__.py.
  • The FLAC encoder binaries are in the speech_recognition/ directory.
  • Documentation can be found in the reference/ directory.
  • Third-party libraries, utilities, and reference material are in the third-party/ directory.

To install/reinstall the library locally, run python setup.py install in the project root directory.

Releases are done by running either build.sh or build.bat. These are bash and batch scripts, respectively, that automatically build Python source packages and Python Wheels, then upload them to PyPI.

Features and bugfixes should be tested, at minimum, on Python 2.7 and a recent version of Python 3. It is highly recommended to test new features on Python 2.6, 2.7, 3.3, and the latest version of Python 3.

Authors

Uberi <[email protected]> (Anthony Zhang)
bobsayshilol
arvindch <[email protected]> (Arvind Chembarpu)
kevinismith <[email protected]> (Kevin Smith)
haas85
DelightRun <[email protected]>
maverickagm

Please report bugs and suggestions at the issue tracker!

How to cite this library (APA style):

Zhang, A. (2016). Speech Recognition (Version 3.2) [Software]. Available from https://github.com/Uberi/speech_recognition#readme.

How to cite this library (Chicago style):

Zhang, Anthony. 2016. Speech Recognition (version 3.2).

Also check out the Python Baidu Yuyin API, which is based on an older version of this project, and adds support for Baidu Yuyin.

License

Copyright 2014-2016 Anthony Zhang (Uberi).

The source code is available online at GitHub.

This program is made available under the 3-clause BSD license. See LICENSE.txt in the project's root directory for more information.

This program distributes source code, binaries, and language files from CMU Sphinx. These files are BSD-licensed and redistributable as long as copyright notices are correctly retained. See speech_recognition/pocketsphinx-data/*/LICENSE*.txt and third-party/LICENSE-Sphinx.txt for details concerning individual files.

This program distributes source code and binaries from PyAudio. These files are MIT-licensed and redistributable as long as copyright notices are correctly retained. See license files inside third-party/LICENSE-PyAudio.txt for details concerning individual files.

About

Speech recognition module for Python, supporting CMU Sphinx, Google Speech Recognition, Wit.ai, IBM Speech to Text, and AT&T Speech to Text.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.2%
  • Other 0.8%