-
Notifications
You must be signed in to change notification settings - Fork 1
/
book_eval_K_OS.py
126 lines (96 loc) · 3.88 KB
/
book_eval_K_OS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import json
from lightfm.data import Dataset
from lightfm import LightFM, lightfm
import numpy as np
import scipy.sparse as sp
import matplotlib
import matplotlib.pyplot as plt
from lightfm import LightFM
from lightfm.datasets import fetch_movielens
from lightfm.evaluation import auc_score
def _shuffle(uids, iids, data, random_state):
shuffle_indices = np.arange(len(uids))
random_state.shuffle(shuffle_indices)
return (uids[shuffle_indices],
iids[shuffle_indices],
data[shuffle_indices])
def random_train_test_split(interactions,
test_percentage=0.2,
random_state=None):
"""
Randomly split interactions between training and testing.
This function takes an interaction set and splits it into
two disjoint sets, a training set and a test set. Note that
no effort is made to make sure that all items and users with
interactions in the test set also have interactions in the
training set; this may lead to a partial cold-start problem
in the test set.
Parameters
----------
interactions: a scipy sparse matrix containing interactions
The interactions to split.
test_percentage: float, optional
The fraction of interactions to place in the test set.
random_state: np.random.RandomState, optional
The random state used for the shuffle.
Returns
-------
(train, test): (scipy.sparse.COOMatrix,
scipy.sparse.COOMatrix)
A tuple of (train data, test data)
"""
if not sp.issparse(interactions):
raise ValueError('Interactions must be a scipy.sparse matrix.')
if random_state is None:
random_state = np.random.RandomState()
interactions = interactions.tocoo()
shape = interactions.shape
uids, iids, data = (interactions.row,
interactions.col,
interactions.data)
uids, iids, data = _shuffle(uids, iids, data, random_state)
cutoff = int((1.0 - test_percentage) * len(uids))
train_idx = slice(None, cutoff)
test_idx = slice(cutoff, None)
train = sp.coo_matrix((data[train_idx],
(uids[train_idx],
iids[train_idx])),
shape=shape,
dtype=interactions.dtype)
test = sp.coo_matrix((data[test_idx],
(uids[test_idx],
iids[test_idx])),
shape=shape,
dtype=interactions.dtype)
return train, test
fr = open('parttialbook.json', )
data = json.load(fr)
dataset = Dataset()
dataset.fit((x['User-ID'] for x in data), (x['ISBN'] for x in data), (x['Book-Rating'] for x in data),
(x['Author'] for x in data))
(interactions, weights) = dataset.build_interactions(((x['User-ID'], x['ISBN']) for x in data))
print(repr(interactions))
(train, test) = random_train_test_split(interactions, test_percentage=0.2, random_state=None)
alpha = 1e-3
epochs = 70
adagrad_model = LightFM(no_components=30,
loss='warp-kos',
learning_schedule='adagrad',
user_alpha=alpha, item_alpha=alpha)
adadelta_model = LightFM(no_components=30,
loss='warp-kos',
learning_schedule='adadelta',
user_alpha=alpha, item_alpha=alpha)
adagrad_auc = []
for epoch in range(epochs):
adagrad_model.fit_partial(train, epochs=1)
adagrad_auc.append(auc_score(adagrad_model, test).mean())
adadelta_auc = []
for epoch in range(epochs):
adadelta_model.fit_partial(train, epochs=1)
adadelta_auc.append(auc_score(adadelta_model, test).mean())
x = np.arange(len(adagrad_auc))
plt.plot(x, np.array(adagrad_auc))
plt.plot(x, np.array(adadelta_auc))
plt.legend(['adagrad', 'adadelta'], loc='lower right')
plt.show()