From 036933a6c295f631f0e71720cf187173dbc593a3 Mon Sep 17 00:00:00 2001 From: Jacob Schwartz Date: Sat, 11 Nov 2023 13:41:32 -0500 Subject: [PATCH] Refactor VRE reserves and fix bug This fixes #573, where Reserves + Num_VRE_Bins > 1 would lead to the VRE_NO_POWER_OUT resources being able to contribute an infinite amount to the reserves. This fixes #574, where VRE power output constraints were being applied length(VRE) times to all VRE resources, when Reserves = 1. --- .../curtailable_variable_renewable.jl | 131 +++++++++--------- 1 file changed, 62 insertions(+), 69 deletions(-) diff --git a/src/model/resources/curtailable_variable_renewable/curtailable_variable_renewable.jl b/src/model/resources/curtailable_variable_renewable/curtailable_variable_renewable.jl index 5555e3f699..cdd43f1a33 100644 --- a/src/model/resources/curtailable_variable_renewable/curtailable_variable_renewable.jl +++ b/src/model/resources/curtailable_variable_renewable/curtailable_variable_renewable.jl @@ -47,24 +47,24 @@ function curtailable_variable_renewable!(EP::Model, inputs::Dict, setup::Dict) add_similar_to_expression!(EP[:eCapResMarBalance], eCapResMarBalanceVRE) end - ### Constratints ### - # For resource for which we are modeling hourly power output - for y in VRE_POWER_OUT - # Define the set of generator indices corresponding to the different sites (or bins) of a particular VRE technology (E.g. wind or solar) in a particular zone. - # For example the wind resource in a particular region could be include three types of bins corresponding to different sites with unique interconnection, hourly capacity factor and maximim available capacity limits. - VRE_BINS = intersect(dfGen[dfGen[!,:R_ID].>=y,:R_ID], dfGen[dfGen[!,:R_ID].<=y+dfGen[y,:Num_VRE_Bins]-1,:R_ID]) - - # Constraints on contribution to regulation and reserves - if Reserves == 1 - curtailable_variable_renewable_reserves!(EP, inputs) - else - # Maximum power generated per hour by renewable generators must be less than - # sum of product of hourly capacity factor for each bin times its the bin installed capacity - # Note: inequality constraint allows curtailment of output below maximum level. - @constraint(EP, [t=1:T], EP[:vP][y,t] <= sum(inputs["pP_Max"][yy,t]*EP[:eTotalCap][yy] for yy in VRE_BINS)) - end - - end + ### Constraints ### + if Reserves == 1 + # Constraints on power output and contribution to regulation and reserves + curtailable_variable_renewable_reserves!(EP, inputs) + remove_reserves_for_binned_vre_resources!(EP, inputs) + else + # For resource for which we are modeling hourly power output + for y in VRE_POWER_OUT + # Define the set of generator indices corresponding to the different sites (or bins) of a particular VRE technology (E.g. wind or solar) in a particular zone. + # For example the wind resource in a particular region could be include three types of bins corresponding to different sites with unique interconnection, hourly capacity factor and maximim available capacity limits. + VRE_BINS = intersect(dfGen[dfGen[!,:R_ID].>=y,:R_ID], dfGen[dfGen[!,:R_ID].<=y+dfGen[y,:Num_VRE_Bins]-1,:R_ID]) + + # Maximum power generated per hour by renewable generators must be less than + # sum of product of hourly capacity factor for each bin times its the bin installed capacity + # Note: inequality constraint allows curtailment of output below maximum level. + @constraint(EP, [t=1:T], EP[:vP][y,t] <= sum(inputs["pP_Max"][yy,t]*EP[:eTotalCap][yy] for yy in VRE_BINS)) + end + end # Set power variables for all bins that are not being modeled for hourly output to be zero for y in VRE_NO_POWER_OUT @@ -102,60 +102,53 @@ The amount of frequency regulation and operating reserves procured in each time ``` """ function curtailable_variable_renewable_reserves!(EP::Model, inputs::Dict) - dfGen = inputs["dfGen"] T = inputs["T"] - VRE_POWER_OUT = intersect(dfGen[dfGen.Num_VRE_Bins.>=1,:R_ID], inputs["VRE"]) - - for y in VRE_POWER_OUT - # Define the set of generator indices corresponding to the different sites (or bins) of a particular VRE technology (E.g. wind or solar) in a particular zone. - # For example the wind resource in a particular region could be include three types of bins corresponding to different sites with unique interconnection, hourly capacity factor and maximim available capacity limits. - VRE_BINS = intersect(dfGen[dfGen[!,:R_ID].>=y,:R_ID], dfGen[dfGen[!,:R_ID].<=y+dfGen[y,:Num_VRE_Bins]-1,:R_ID]) - - if y in inputs["REG"] && y in inputs["RSV"] # Resource eligible for regulation and spinning reserves - @constraints(EP, begin - # For VRE, reserve contributions must be less than the specified percentage of the capacity factor for the hour - [t=1:T], EP[:vREG][y,t] <= dfGen[y,:Reg_Max]*sum(inputs["pP_Max"][yy,t]*EP[:eTotalCap][yy] for yy in VRE_BINS) - [t=1:T], EP[:vRSV][y,t] <= dfGen[y,:Rsv_Max]*sum(inputs["pP_Max"][yy,t]*EP[:eTotalCap][yy] for yy in VRE_BINS) - - # Power generated and regulation reserve contributions down per hour must be greater than zero - [t=1:T], EP[:vP][y,t]-EP[:vREG][y,t] >= 0 - - # Power generated and reserve contributions up per hour by renewable generators must be less than - # hourly capacity factor. Note: inequality constraint allows curtailment of output below maximum level. - [t=1:T], EP[:vP][y,t]+EP[:vREG][y,t]+EP[:vRSV][y,t] <= sum(inputs["pP_Max"][yy,t]*EP[:eTotalCap][yy] for yy in VRE_BINS) - end) - elseif y in inputs["REG"] # Resource only eligible for regulation reserves - @constraints(EP, begin - # For VRE, reserve contributions must be less than the specified percentage of the capacity factor for the hour - [t=1:T], EP[:vREG][y,t] <= dfGen[y,:Reg_Max]*sum(inputs["pP_Max"][yy,t]*EP[:eTotalCap][yy] for yy in VRE_BINS) - - # Power generated and regulation reserve contributions down per hour must be greater than zero - [t=1:T], EP[:vP][y,t]-EP[:vREG][y,t] >= 0 - - # Power generated and reserve contributions up per hour by renewable generators must be less than - # hourly capacity factor. Note: inequality constraint allows curtailment of output below maximum level. - [t=1:T], EP[:vP][y,t]+EP[:vREG][y,t] <= sum(inputs["pP_Max"][yy,t]*EP[:eTotalCap][yy] for yy in VRE_BINS) - end) - - elseif y in inputs["RSV"] # Resource only eligible for spinning reserves - only available in up, no down spinning reserves - - @constraints(EP, begin - # For VRE, reserve contributions must be less than the specified percentage of the capacity factor for the hour - [t=1:T], EP[:vRSV][y,t] <= dfGen[y,:Rsv_Max]*sum(inputs["pP_Max"][yy,t]*EP[:eTotalCap][yy] for yy in VRE_BINS) - - # Power generated and reserve contributions up per hour by renewable generators must be less than - # hourly capacity factor. Note: inequality constraint allows curtailment of output below maximum level. - [t=1:T], EP[:vP][y,t]+EP[:vRSV][y,t] <= sum(inputs["pP_Max"][yy,t]*EP[:eTotalCap][yy] for yy in VRE_BINS) - end) - else # Resource not eligible for reserves - # Maximum power generated per hour by renewable generators must be less than - # sum of product of hourly capacity factor for each bin times its the bin installed capacity - # Note: inequality constraint allows curtailment of output below maximum level. - @constraint(EP, [t=1:T], EP[:vP][y,t] <= sum(inputs["pP_Max"][yy,t]*EP[:eTotalCap][yy] for yy in VRE_BINS)) - end - end + VRE = inputs["VRE"] + VRE_POWER_OUT = intersect(dfGen[dfGen.Num_VRE_Bins.>=1,:R_ID], VRE) + REG = intersect(VRE_POWER_OUT, inputs["REG"]) + RSV = intersect(VRE_POWER_OUT, inputs["RSV"]) + + eTotalCap = EP[:eTotalCap] + vP = EP[:vP] + vREG = EP[:vREG] + vRSV = EP[:vRSV] + hourly_capacity_factor(y, t) = inputs["pP_Max"][y, t] + reg_max(y) = dfGen[y, :Reg_Max] + rsv_max(y) = dfGen[y, :Rsv_Max] + + hourly_capacity(y, t) = hourly_capacity_factor(y, t) * eTotalCap[y] + resources_in_bin(y) = UnitRange(y, y + dfGen[y, :Num_VRE_Bins] - 1) + hourly_bin_capacity(y, t) = sum(hourly_capacity(yy, t) for yy in resources_in_bin(y)) + + @constraint(EP, [y in REG, t in 1:T], vREG[y, t] <= reg_max(y) * hourly_bin_capacity(y, t)) + @constraint(EP, [y in RSV, t in 1:T], vRSV[y, t] <= rsv_max(y) * hourly_bin_capacity(y, t)) + + expr = extract_time_series_to_expression(vP, VRE_POWER_OUT) + add_similar_to_expression!(expr[REG, :], -vREG[REG, :]) + @constraint(EP, [y in VRE_POWER_OUT, t in 1:T], expr[y, t] >= 0) + + expr = extract_time_series_to_expression(vP, VRE_POWER_OUT) + add_similar_to_expression!(expr[REG, :], +vREG[REG, :]) + add_similar_to_expression!(expr[RSV, :], +vRSV[RSV, :]) + @constraint(EP, [y in VRE_POWER_OUT, t in 1:T], expr[y, t] <= hourly_bin_capacity(y, t)) +end + +function remove_reserves_for_binned_vre_resources!(EP::Model, inputs::Dict) + dfGen = inputs["dfGen"] + + VRE = inputs["VRE"] + VRE_POWER_OUT = intersect(dfGen[dfGen.Num_VRE_Bins.>=1,:R_ID], VRE) + REG = inputs["REG"] + RSV = inputs["RSV"] + VRE_NO_POWER_OUT = setdiff(VRE, VRE_POWER_OUT) + for y in intersect(VRE_NO_POWER_OUT, REG) + fix.(EP[:vREG][y,:], 0.0, force=true) + end + for y in intersect(VRE_NO_POWER_OUT, RSV) + fix.(EP[:vRSV][y,:], 0.0, force=true) + end end