forked from TheAlgorithms/JavaScript
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DecimalExpansion.js
67 lines (57 loc) · 1.7 KB
/
DecimalExpansion.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/**
* @author Eric Lavault <https://github.com/lvlte>
*
* Represents the decimal (or binary, octal, any base from 2 to 10) expansion
* of a/b using euclidean division.
*
* Because this function is recursive, it may throw an error when reaching the
* maximum call stack size.
*
* Returns an array containing : [
* 0: integer part of the division
* 1: array of decimals (if any, or an empty array)
* 2: indexOf 1st cycle digit in decimals array if a/b is periodic, or undef.
* ]
*
* @see https://mathworld.wolfram.com/DecimalExpansion.html
*
* @param {number} a
* @param {number} b
* @param {number} [base=10]
* @returns {array}
*/
export function decExp (a, b, base = 10, exp = [], d = {}, dlen = 0) {
if (base < 2 || base > 10) {
throw new RangeError('Unsupported base. Must be in range [2, 10]')
}
if (a === 0) {
return [0, [], undefined]
}
if (a === b && dlen === 0) {
return [1, [], undefined]
}
// d contains the dividends used so far and the corresponding index of its
// euclidean division by b in the expansion array.
d[a] = dlen++
if (a < b) {
exp.push(0)
return decExp(a * base, b, base, exp, d, dlen)
}
// Euclid's division lemma : a = bq + r
const r = a % b
const q = (a - r) / b
// Decimal expansion (1st element is the integer part)
exp.push(+q.toString(base))
if (r === 0) {
// got a regular number (division terminates)
return [exp[0], exp.slice(1), undefined]
}
// For the next iteration
a = r * base
// Check if `a` has already been used as a dividend, in which case it means
// the expansion is periodic.
if (a in d) {
return [exp[0], exp.slice(1), d[a] - 1]
}
return decExp(a, b, base, exp, d, dlen)
}