-
Notifications
You must be signed in to change notification settings - Fork 20
/
FllpBinaryTreeToMatchPreorderraversal
139 lines (114 loc) · 3.85 KB
/
FllpBinaryTreeToMatchPreorderraversal
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
You are given the root of a binary tree with n nodes, where each node is uniquely assigned a value from 1 to n. You are also given a sequence of n values voyage, which is the desired pre-order traversal of the binary tree.
Any node in the binary tree can be flipped by swapping its left and right subtrees. For example, flipping node 1 will have the following effect:
Flip the smallest number of nodes so that the pre-order traversal of the tree matches voyage.
Return a list of the values of all flipped nodes. You may return the answer in any order. If it is impossible to flip the nodes in the tree to make the pre-order traversal match voyage, return the list [-1].
Example 1:
Input: root = [1,2], voyage = [2,1]
Output: [-1]
Explanation: It is impossible to flip the nodes such that the pre-order traversal matches voyage.
Example 2:
Input: root = [1,2,3], voyage = [1,3,2]
Output: [1]
Explanation: Flipping node 1 swaps nodes 2 and 3, so the pre-order traversal matches voyage.
Example 3:
Input: root = [1,2,3], voyage = [1,2,3]
Output: []
Explanation: The tree's pre-order traversal already matches voyage, so no nodes need to be flipped.
Constraints:
The number of nodes in the tree is n.
n == voyage.length
1 <= n <= 100
1 <= Node.val, voyage[i] <= n
All the values in the tree are unique.
All the values in voyage are unique.
Solution:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
int i=0;
List<Integer> ar=new ArrayList<>();
public List<Integer> flipMatchVoyage(TreeNode root, int[] voyage) {
dfs(null,root,voyage);
List<Integer> a=new ArrayList<>();
if(ar.indexOf(-1)!=-1){
a.add(-1);
return a;
}
return ar;
}
public void dfs(TreeNode ROOT,TreeNode root,int[] voyage){
if(root==null){
return;
}
if(i>=voyage.length){
return;
}
if(root.val==voyage[i]){
i++;
}
else if(root.val!=voyage[i]){
if(ROOT==null){
ar.add(-1);
i++;
}
else if(ROOT.left!=null && ROOT.left.val==root.val){
if(ROOT.right==null){
ar.add(-1);
i++;
}
else{
TreeNode temp=ROOT.right;
ROOT.right=ROOT.left;
ROOT.left=temp;
root=ROOT.left;
if(root.val!=voyage[i]){
ar.add(-1);
}
else{
ar.add(ROOT.val);
}
i++;
}
}
else if(ROOT.right!=null && ROOT.right.val==root.val){
if(ROOT.left==null){
ar.add(-1);
i++;
}
else{
TreeNode temp=ROOT.left;
ROOT.left=ROOT.right;
ROOT.right=temp;
root=ROOT.right;
if(root.val!=voyage[i]){
ar.add(-1);
}
else{
ar.add(ROOT.val);
}
i++;
}
}
}
if(root.left!=null){
dfs(root,root.left,voyage);
}
if(root.right!=null){
dfs(root,root.right,voyage);
}
return;
}
}