-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_yolov8.py
215 lines (174 loc) · 8.22 KB
/
train_yolov8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
import torch.nn.functional as F
import numpy as np
from lisa import LISA
from torch.utils.data import DataLoader
import yaml
import matplotlib.pyplot as plt
import seaborn as sns
from torch.optim.lr_scheduler import CosineAnnealingLR
from warmup_scheduler_pytorch import WarmUpScheduler
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
import os
from yolov8 import DetectionModel, Detect
from ema import ModelEMA
class YOLO(pl.LightningModule):
def __init__(self, cfg='yolov8.yaml', pretrained=False, freeze=False, init_resolution=(416, 416), yolo_reduction_factor=32):
super().__init__()
self.save_hyperparameters()
self.pretrained = pretrained
self.freeze = freeze
self.init_resolution = init_resolution
self.yolo_reduction_factor = yolo_reduction_factor
self.yolo = DetectionModel(cfg=cfg, ch=3, nc=3)
self.yolo.criterion = self.yolo.init_criterion()
def nms(self, preds):
# preds [(1, anchors, 2n, 2n, 8), (1, anchors, n, n, 8)]
preds[0] = preds[0][0:1]
preds[1] = preds[1][0:1]
with torch.inference_mode():
preds[0][..., 1:5], preds[1][..., 1:5] = self.pred_to_coord3(preds[0][..., 1:5]), self.pred_to_coord3(preds[1][..., 1:5])
bboxes = torch.cat([preds[0].view(-1, 8), preds[1].view(-1, 8)], dim=0)
torch.sigmoid_(bboxes[:, 0])
bboxes[:, 5:] = F.softmax(bboxes[:, 5:], dim=1)
bboxes[:, 5:] *= bboxes[:, 0:1] # multiply iou * pr(object) * pr(class | object) = iou * pr(class and object)
bboxes = bboxes[bboxes[:, 0] > 0.01][:, 1:] # filter out low confidence boxes
out = []
for class_idx in range(4, 7): # class probability score indexes
boxes = bboxes.clone()
boxes = boxes[boxes[:, 4:7].argmax(dim=1) == (class_idx - 4)]
while not torch.all(boxes[:, class_idx] == 0) and boxes.shape[0] > 0:
best_box = boxes[boxes[:, class_idx].argmax()]
out.append(best_box) # add max conf
iou_mask = self.iou(boxes[:, :4], best_box[None, :4]) <= 0.6
boxes = boxes[iou_mask]
# stack to tensor before returning
out = torch.stack(out[:10], dim=0) if len(out) > 0 else torch.empty((0, 4))
return out
def iou(self, boxes, gt, eps=1e-5):
pmins = boxes[..., :2]
pmaxs = boxes[..., 2:]
gtmins = gt[..., :2]
gtmaxs = gt[..., 2:]
intersection = (torch.minimum(pmaxs, gtmaxs) - torch.maximum(pmins, gtmins)).clamp(0)
intersection = intersection[..., 0] * intersection[..., 1] # intersection area
parea, gtarea = (pmaxs - pmins), (gtmaxs - gtmins)
union = parea[..., 0] * parea[..., 1] + gtarea[..., 0] * gtarea[..., 1] - intersection + eps
iou = intersection / union
return iou
def xywh2xyxy(self, xywh):
xy, wh = xywh.chunk(2, dim=-1)
_wh = wh / 2
xy, _xy = xy - _wh, xy + _wh
return torch.cat([xy, _xy], dim=-1) # now in xyxy
def forward(self, x):
return self.yolo(x)
def training_step(self, batch, batch_idx, train=True):
# torch.cuda.empty_cache()
images, labels, _, _ = batch
preds = self(images)
loss = self.yolo.criterion(preds, batch)
if train:
self.log('loss', loss)
return loss
def training_step_end(self, outputs):
lr = self.lr_schedulers().get_last_lr()[0]
self.log('learning rate', lr)
def validation_step(self, batch, batch_idx):
loss = self.training_step(batch, batch_idx, train=False)
self.log('validation loss', loss)
def lr_scheduler_step(self, scheduler, *args, **kwargs):
scheduler.step()
def configure_optimizers(self):
# if freeze, freeze layers except detection head
# if pretrained, batch norm in eval mode to not update running stats
groups = [], [] # bias/batch norm parameters - no weight decay, weights - weight decay
norms = tuple(v for k, v in torch.nn.__dict__.items() if 'Norm' in k) # any torch layer that is a normalization layer
head = False
# DFS, so simple approach is to know we're in Detect once encountered, then out once we encounter a module after detect
# don't have to worry about once we're out of detect though because it's the last module
for mod in self.yolo.modules():
if isinstance(mod, Detect): head = True
if self.pretrained and isinstance(mod, norms):
mod.eval()
for param_name, param in mod.named_parameters(recurse=False): # module loop already handles recursion
if self.freeze and not head: # freeze everything except head
param.requires_grad_(False)
if param_name == 'bias' or (param_name == 'weight' and isinstance(param, norms)):
groups[0].append(param)
else:
groups[1].append(param)
optimizer = torch.optim.AdamW([{'params': groups[0], 'weight_decay': 0.0},
{'params': groups[1]}
], lr=1e-4, weight_decay=1e-5)
total_steps = self.trainer.estimated_stepping_batches
cosine_steps = int(0.9 * total_steps)
warmup_steps = total_steps - cosine_steps
cosine_scheduler = CosineAnnealingLR(optimizer, T_max=cosine_steps, eta_min=5e-6, last_epoch=-1)
lr_scheduler = WarmUpScheduler(optimizer, cosine_scheduler, len_loader=total_steps, warmup_steps=warmup_steps, warmup_start_lr=5e-6, warmup_mode='linear')
return {"optimizer" : optimizer,
"lr_scheduler" : {
"scheduler" : lr_scheduler,
"interval" : "step",
"frequency" : 1
}
}
def pretrained(yolo, anchors, load_pt=True, load_ckpt=False, freeze=True):
if load_pt:
yolo = torch.load('yolov8s/yolov8s.pt') # load pretrained weights
elif load_ckpt:
yolo = yolo.load_from_checkpoint('yolov8s/last.ckpt')
yolo.anchors = anchors.to(device='cuda')
yolo.grid = yolo.grid.to(device='cuda')
yolo.pretrained = True
yolo.freeze = freeze
with open('/home/further/TLR/ultralytics/dataset.yaml', 'r') as file:
yolo.data = yaml.safe_load(file)
yolo.names = ['stop', 'warning', 'go']
yolo.count = 0
return yolo
if __name__ == '__main__':
batch_size = 32
train_data = LISA(split='train')
val_data = LISA(split='val')
train_dataloader = DataLoader(
train_data,
batch_size=batch_size,
shuffle=True,
collate_fn=train_data.collate_fn,
num_workers=os.cpu_count(),
)
validation_dataloader = DataLoader(
val_data,
batch_size=batch_size,
collate_fn=val_data.collate_fn,
num_workers=os.cpu_count(),
)
steps_per_epoch = len(train_dataloader)
ckpt_callback = ModelCheckpoint(
dirpath='yolov3-tiny/',
save_last=True,
save_weights_only=True, # don't save lr, optimizers etc
# monitor='validation loss',
every_n_train_steps=int(steps_per_epoch / 20),
save_on_train_epoch_end=True
)
yolo = YOLO(pretrained=False, freeze=False, init_resolution=(416, 416), yolo_reduction_factor=32)
yolo = pretrained(yolo, load_pt=True, load_ckpt=False, freeze=False)
trainer = pl.Trainer(
gradient_clip_val=5,
accelerator='gpu',
auto_select_gpus=True,
benchmark=True, # should be faster for constant size batches
max_epochs=10,
limit_val_batches=0.2,
# overfit_batches=1,
# profiler="simple",
callbacks=[ckpt_callback],
default_root_dir='logs/',
log_every_n_steps=10,
)
trainer.fit(yolo, train_dataloaders=train_dataloader, val_dataloaders=validation_dataloader) # ckpt_path='yolov3-tiny/last.ckpt',
torch.save(yolo, 'yolov8s/v8_!ema.pt')
# yolo detect train model=yolov8s.pt pretrained=True data=ultralytics/dataset.yaml epochs=12 batch=32 imgsz=416 device=0 optimizer=AdamW cos_lr=True label_smoothing=0.01 lr0=0.0001 warmup_epochs=0.1