-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
415 lines (355 loc) · 19.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import gc
import os
import random
import sys
import platform
sys.path.append("./")
import gradio as gr
import numpy as np
import torch
from PIL import Image, PngImagePlugin
import datetime
import csv
from pipelines.pipeline_common import quantize_4bit, torch_gc
from pipelines.pipeline_stable_cascade import StableCascadeDecoderPipelineV2
from pipelines.pipeline_stable_cascade_prior import StableCascadePriorPipelineV2
from models.unets.unet_stable_cascade import StableCascadeUNet
from diffusers.utils import logging
import argparse
# Set up argument parser
parser = argparse.ArgumentParser(description="Gradio interface for text-to-image generation with optional features.")
parser.add_argument("--share", action="store_true", help="Enable Gradio sharing.")
parser.add_argument("--lowvram", action="store_true", help="Enable CPU offload for model operations.")
parser.add_argument("--torch_compile", action="store_true", help="Enable CPU offload for model operations.")
parser.add_argument("--fp16", action="store_true", help="Load models in fp16.")
parser.add_argument("--load_mode", default=None, type=str, choices=["4bit", "8bit"], help="Quantization mode for optimization memory consumption")
parser.add_argument("--lite", action="store_true", help="Uses Lite unet")
logger = logging.get_logger(__name__)
# Parse arguments
args = parser.parse_args()
share = args.share
load_mode = args.load_mode
ENABLE_CPU_OFFLOAD = args.lowvram
USE_TORCH_COMPILE = args.torch_compile
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.allow_tf32 = False
need_restart_cpu_offloading = False
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
dtypeQuantize = dtype
if load_mode in ('8bit', '4bit'):
dtypeQuantize = torch.float8_e4m3fn
lite = "_lite" if args.lite else ""
print(f"used dtype {dtypeQuantize}")
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
if not torch.cuda.is_available():
print("Running on CPU 🥶")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
model_id = "stabilityai/stable-cascade-prior"
model_decoder_id = "stabilityai/stable-cascade"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
pipe_prior_unet = None
prior_pipeline = None
pipe_decoder_unet = None
decoder_pipeline = None
def load_styles():
styles = {"No Style": ("", "")}
try:
with open('styles.csv', mode='r', encoding='utf-8') as csvfile:
reader = csv.reader(csvfile)
next(reader) # Skip the header row
for row in reader:
if len(row) == 3:
styles[row[0]] = (row[1], row[2])
except Exception as e:
print(f"Failed to load styles from CSV: {e}")
return styles
styles = load_styles()
def restart_cpu_offload():
if load_mode != '4bit':
prior_pipeline.disable_xformers_memory_efficient_attention()
decoder_pipeline.disable_xformers_memory_efficient_attention()
from pipelines.pipeline_common import optionally_disable_offloading
optionally_disable_offloading(prior_pipeline)
optionally_disable_offloading(decoder_pipeline)
gc.collect()
torch.cuda.empty_cache()
prior_pipeline.enable_model_cpu_offload()
decoder_pipeline.enable_model_cpu_offload()
if load_mode != '4bit':
prior_pipeline.enable_xformers_memory_efficient_attention()
decoder_pipeline.enable_xformers_memory_efficient_attention()
def read_image_metadata(image_path):
if image_path is None or not os.path.exists(image_path):
return "File does not exist or path is None."
last_modified_timestamp = os.path.getmtime(image_path)
last_modified_date = datetime.datetime.fromtimestamp(last_modified_timestamp).strftime('%d %B %Y, %H:%M %p - UTC')
with Image.open(image_path) as img:
metadata = img.info
metadata_str = f"Last Modified Date: {last_modified_date}\n"
for key, value in metadata.items():
metadata_str += f"{key}: {value}\n"
return metadata_str
def save_image_with_metadata(image, filename, metadata):
meta_info = PngImagePlugin.PngInfo()
for key, value in metadata.items():
meta_info.add_text(key, str(value))
image.save(filename, "PNG", pnginfo=meta_info)
def set_metadata_settings(image_path, style_dropdown):
if image_path is None:
return (gr.update(),) * 11 # Return a tuple of 11 gr.update() calls
with Image.open(image_path) as img:
metadata = img.info
prompt = metadata.get("Prompt", "")
negative_prompt = metadata.get("Negative Prompt", "")
style = metadata.get("Style", "No Style")
seed = int(metadata.get("Seed", "0"))
width = int(metadata.get("Width", "1024"))
height = int(metadata.get("Height", "1024"))
prior_guidance_scale = float(metadata.get("Prior Guidance Scale", "4.0"))
decoder_guidance_scale = float(metadata.get("Decoder Guidance Scale", "0.0"))
prior_num_inference_steps = int(metadata.get("Prior Inference Steps", "30"))
decoder_num_inference_steps = int(metadata.get("Decoder Inference Steps", "20"))
batch_size_per_prompt = int(metadata.get("Batch Size", "1"))
number_of_images_per_prompt = int(metadata.get("Number Of Images To Generate", "1"))
# Construct the updates list with gr.update calls for each setting
updates = [
gr.update(value=prompt),
gr.update(value=negative_prompt),
gr.update(value=style),
gr.update(value=seed),
gr.update(value=width),
gr.update(value=height),
gr.update(value=prior_guidance_scale),
gr.update(value=decoder_guidance_scale),
gr.update(value=prior_num_inference_steps),
gr.update(value=decoder_num_inference_steps),
gr.update(value=batch_size_per_prompt),
gr.update(value=number_of_images_per_prompt)
]
return tuple(updates)
def generate(
prompt: str,
negative_prompt: str = "",
style: str = "No Style",
seed: int = 0,
width: int = 1024,
height: int = 1024,
prior_num_inference_steps: int = 30,
prior_guidance_scale: float = 4.0,
decoder_num_inference_steps: int = 12,
decoder_guidance_scale: float = 0.0,
batch_size_per_prompt: int = 2,
number_of_images_per_prompt: int = 1,
randomize_seed_ck: bool = False,
loop_styles_ck: bool = False # New parameter to handle looping through styles
):
global pipe_prior_unet, prior_pipeline, pipe_decoder_unet, decoder_pipeline, need_restart_cpu_offloading
if torch.cuda.is_available():
need_restart_cpu_offloading = False
if prior_pipeline is None:
pipe_prior_unet = StableCascadeUNet.from_pretrained(
model_id, subfolder=fr"prior{lite}").to(device, dtypeQuantize)
if load_mode == '4bit':
quantize_4bit(pipe_prior_unet)
pipeline_param = {
'pretrained_model_name_or_path': model_id,
'use_safetensors': True,
'torch_dtype': dtype,
'prior':pipe_prior_unet
}
prior_pipeline = StableCascadePriorPipelineV2.from_pretrained(**pipeline_param).to(device)
if load_mode == '4bit':
if prior_pipeline.text_encoder is not None:
quantize_4bit(prior_pipeline.text_encoder)
if load_mode != '4bit' :
prior_pipeline.enable_xformers_memory_efficient_attention()
else:
if ENABLE_CPU_OFFLOAD:
need_restart_cpu_offloading =True
torch_gc()
if decoder_pipeline is None:
pipe_decoder_unet = StableCascadeUNet.from_pretrained(
model_decoder_id, subfolder=fr"decoder{lite}").to(device, dtypeQuantize)
if load_mode == '4bit':
quantize_4bit(pipe_decoder_unet)
pipeline_decoder_param = {
'pretrained_model_name_or_path': model_decoder_id,
'use_safetensors': True,
'torch_dtype': dtype,
'decoder': pipe_decoder_unet,
}
decoder_pipeline = StableCascadeDecoderPipelineV2.from_pretrained(**pipeline_decoder_param).to(device)
if load_mode == '4bit':
if decoder_pipeline.text_encoder is not None:
quantize_4bit(decoder_pipeline.text_encoder)
if load_mode != '4bit' :
decoder_pipeline.enable_xformers_memory_efficient_attention()
else:
if ENABLE_CPU_OFFLOAD:
need_restart_cpu_offloading=True
torch_gc()
if need_restart_cpu_offloading:
restart_cpu_offload()
elif ENABLE_CPU_OFFLOAD:
prior_pipeline.enable_model_cpu_offload()
decoder_pipeline.enable_model_cpu_offload()
if USE_TORCH_COMPILE:
prior_pipeline.prior = torch.compile(prior_pipeline.prior, mode="reduce-overhead", fullgraph=True)
decoder_pipeline.decoder = torch.compile(decoder_pipeline.decoder, mode="max-autotune", fullgraph=True)
images = [] # Initialize an empty list to collect generated images
original_seed = seed # Store the original seed value
# Parse the prompt and split it into multiple prompts if it's multi-line
prompt_lines = prompt.split('\n')
image_counter = 1
for line in prompt_lines:
original_prompt = line.strip()
original_neg_prompt = negative_prompt
# Use all styles if loop_styles_ck is True, otherwise use only the selected style
selected_styles = styles if loop_styles_ck else [(style, "", "")]
total_images = len(selected_styles) * number_of_images_per_prompt * len(prompt_lines)
for style_name in selected_styles:
get_name = style_name[0]
if(len(get_name) < 2):
get_name = style_name
style_prompt, style_negative_prompt = styles.get(get_name, ("", ""))
# Replace placeholders in the style prompt
prompt = style_prompt.replace("{prompt}", original_prompt) if style_prompt else original_prompt
negative_prompt = style_negative_prompt if style_negative_prompt else original_neg_prompt
print(f"\nFinal Prompt: {prompt}")
print(f"Final Negative Prompt: {negative_prompt}\n")
for i in range(number_of_images_per_prompt):
if randomize_seed_ck or i > 0: # Update seed if randomize is checked or for subsequent images
seed = random.randint(0, MAX_SEED)
print(f"Image {image_counter}/{total_images} Being Generated")
image_counter=image_counter+1
generator = torch.Generator().manual_seed(seed)
with torch.cuda.amp.autocast(dtype=dtype):
prior_output = prior_pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=prior_num_inference_steps,
height=height,
width=width,
guidance_scale=prior_guidance_scale,
num_images_per_prompt=batch_size_per_prompt,
generator=generator,
dtype=dtype,
device=device,
)
decoder_output = decoder_pipeline(
image_embeddings=prior_output.image_embeddings,
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=decoder_num_inference_steps,
guidance_scale=decoder_guidance_scale,
generator=generator,
dtype=dtype,
device=device,
output_type="pil",
).images
# Append generated images to the images list
images.extend(decoder_output)
# Optionally, save each image
output_folder = 'outputs'
if not os.path.exists(output_folder):
os.makedirs(output_folder)
for image in decoder_output:
# Generate timestamped filename
timestamp = datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S_%f')
image_filename = f"{output_folder}/{timestamp}.png"
# Prepare metadata
metadata = {
"Prompt": original_prompt,
"Negative Prompt": original_neg_prompt,
"Style":style,
"Seed": seed,
"Width": width,
"Height": height,
"Prior Guidance Scale": prior_guidance_scale,
"Decoder Guidance Scale": decoder_guidance_scale,
"Prior Inference Steps": prior_num_inference_steps,
"Decoder Inference Steps": decoder_num_inference_steps
}
# Save image with metadata
save_image_with_metadata(image, image_filename, metadata)
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Return the list of generated images
return images, seed
else:
prior_pipeline = None
decoder_pipeline = None
return
def open_folder():
open_folder_path = os.path.abspath("outputs")
if platform.system() == "Windows":
os.startfile(open_folder_path)
elif platform.system() == "Linux":
os.system(f'xdg-open "{open_folder_path}"')
# Modify the existing Blocks setup to add a dropdown for styles
with gr.Blocks() as app:
gr.Markdown(""" #### Stable Cascade V12 by SECourses : 1-Click Installers Latest Version On : https://www.patreon.com/posts/98410661
#### [Stable Cascade](https://stability.ai/news/introducing-stable-cascade) is the latest model of Stability AI based on Würstchen architecture - We have 1-Click Installers for Windows, RunPod, Massed Compute, Ubuntu Linux and a Free Kaggle account notebook
#### Stable Cascade is compatible with GPUs having as little as 5 GB of memory and can generate high-quality images at resolutions even at 1536x1536 pixels. It supports resolution adjustments in 128-pixel steps, e.g. 1024x1024 or 1152x1024 or 1152x896
#### Our APP's Features: Auto save images with metadata (configuration / settings), 275 preset-styles, loop styles, multi-line different prompts, load config from generated images, 4-bit, 8-bit and 16-bit precision, extreme VRAM optimization""")
with gr.Tab("Image Generation"):
with gr.Row():
with gr.Column():
# Main settings column
with gr.Row():
prompt = gr.Textbox(
label="Prompt - Each New Line is Parsed as a New Prompt",
placeholder="Enter your prompt",
lines=3
)
with gr.Row():
negative_prompt = gr.Text(label="Negative prompt", placeholder="Enter a Negative Prompt")
with gr.Row():
style_dropdown = gr.Dropdown(label="Style", choices=list(styles.keys()), value="No Style")
loop_styles_ck = gr.Checkbox(label="Loop All Styles", value=False) # New Checkbox for looping through all styles
with gr.Row():
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed_ck = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=128, value=1024)
height = gr.Slider(label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=128, value=1024)
with gr.Row():
batch_size_per_prompt = gr.Slider(label="Batch Size", minimum=1, maximum=20, step=1, value=1)
number_of_images_per_prompt = gr.Slider(label="Number Of Images To Generate", minimum=1, maximum=9999999, step=1, value=1)
with gr.Row():
prior_guidance_scale = gr.Slider(label="Prior Guidance Scale (CFG)", minimum=0, maximum=20, step=0.1, value=4.0)
decoder_guidance_scale = gr.Slider(label="Decoder Guidance Scale (CFG)", minimum=0, maximum=20, step=0.1, value=0.0)
with gr.Row():
prior_num_inference_steps = gr.Slider(label="Prior Inference Steps", minimum=1, maximum=100, step=1, value=30)
decoder_num_inference_steps = gr.Slider(label="Decoder Inference Steps", minimum=1, maximum=100, step=1, value=20)
with gr.Row():
run_button = gr.Button("Generate")
with gr.Row():
btn_open_outputs = gr.Button("Open Outputs Folder (Works on Windows & Desktop Linux)")
btn_open_outputs.click(fn=open_folder)
with gr.Column():
# Output and additional settings column
result = gr.Gallery(label="Result", show_label=False, height=768)
run_button.click(fn=generate, inputs=[
prompt, negative_prompt, style_dropdown, seed, width, height,
prior_num_inference_steps, prior_guidance_scale,
decoder_num_inference_steps, decoder_guidance_scale,
batch_size_per_prompt, number_of_images_per_prompt, randomize_seed_ck, loop_styles_ck
], outputs=[result, seed])
with gr.Tab("Image Metadata"):
with gr.Row():
set_metadata_button = gr.Button("Load & Set Metadata Settings")
with gr.Row():
with gr.Column():
metadata_image_input = gr.Image(type="filepath", label="Upload Image")
with gr.Column():
metadata_output = gr.Textbox(label="Image Metadata", lines=25, max_lines=50)
metadata_image_input.change(fn=read_image_metadata, inputs=[metadata_image_input], outputs=[metadata_output])
set_metadata_button.click(fn=set_metadata_settings, inputs=[metadata_image_input, style_dropdown], outputs=[
prompt, negative_prompt, style_dropdown, seed, width, height,
prior_guidance_scale, decoder_guidance_scale, prior_num_inference_steps, decoder_num_inference_steps,
batch_size_per_prompt, number_of_images_per_prompt,
])
if __name__ == "__main__":
app.launch(share=share, inbrowser=True)