-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrife_model.py
130 lines (105 loc) · 4.22 KB
/
rife_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
from diffusers.image_processor import VaeImageProcessor
from torch.nn import functional as F
import cv2
import utils
from rife.pytorch_msssim import ssim_matlab
import numpy as np
import logging
import skvideo.io
from rife.RIFE_HDv3 import Model
logger = logging.getLogger(__name__)
device = "cuda" if torch.cuda.is_available() else "cpu"
def pad_image(img, scale):
_, _, h, w = img.shape
# Calculate padding based on RIFE's expected multiples
pad_h = (16 - (h % 16)) % 16
pad_w = (16 - (w % 16)) % 16
padding = (pad_w//2, pad_w - pad_w//2, pad_h//2, pad_h-pad_h//2) # Distribute padding evenly
return F.pad(img, padding)
def make_inference(model, I0, I1, upscale_amount, n):
middle = model.inference(I0, I1, upscale_amount)
if n == 1:
return [middle]
first_half = make_inference(model, I0, middle, upscale_amount, n=n // 2)
second_half = make_inference(model, middle, I1, upscale_amount, n=n // 2)
if n % 2:
return [*first_half, middle, *second_half]
else:
return [*first_half, *second_half]
@torch.inference_mode()
def ssim_interpolation_rife(model, samples, exp=1, upscale_amount=1, output_device="cpu"):
output = []
# [f, c, h, w]
for b in range(samples.shape[0]):
frame = samples[b : b + 1]
_, _, h, w = frame.shape
I0 = samples[b : b + 1]
I1 = samples[b + 1 : b + 2] if b + 2 < samples.shape[0] else samples[-1:]
I1 = pad_image(I1, upscale_amount)
# [c, h, w]
I0_small = F.interpolate(I0, (32, 32), mode="bilinear", align_corners=False)
I1_small = F.interpolate(I1, (32, 32), mode="bilinear", align_corners=False)
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
if ssim > 0.996:
I1 = I0
I1 = pad_image(I1, upscale_amount)
I1 = make_inference(model, I0, I1, upscale_amount, 1)
I1_small = F.interpolate(I1[0], (32, 32), mode="bilinear", align_corners=False)
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
frame = I1[0]
I1 = I1[0]
tmp_output = []
if ssim < 0.2:
for i in range((2**exp) - 1):
tmp_output.append(I0)
else:
tmp_output = make_inference(model, I0, I1, upscale_amount, 2**exp - 1) if exp else []
frame = pad_image(frame, upscale_amount)
tmp_output = [frame] + tmp_output
for i, frame in enumerate(tmp_output):
output.append(frame.to(output_device))
return output
def load_rife_model(model_path):
model = Model()
model.load_model(model_path, -1)
model.eval()
return model
# Create a generator that yields each frame, similar to cv2.VideoCapture
def frame_generator(video_capture):
while True:
ret, frame = video_capture.read()
if not ret:
break
yield frame
video_capture.release()
def rife_inference_with_path(model, video_path):
video_capture = cv2.VideoCapture(video_path)
tot_frame = video_capture.get(cv2.CAP_PROP_FRAME_COUNT)
pt_frame_data = []
pt_frame = skvideo.io.vreader(video_path)
for frame in pt_frame:
pt_frame_data.append(
torch.from_numpy(np.transpose(frame, (2, 0, 1))).to("cpu", non_blocking=True).float() / 255.0
)
pt_frame = torch.from_numpy(np.stack(pt_frame_data))
pt_frame = pt_frame.to(device)
pbar = utils.ProgressBar(tot_frame, desc="RIFE inference")
frames = ssim_interpolation_rife(model, pt_frame)
pt_image = torch.stack([frames[i].squeeze(0) for i in range(len(frames))])
image_np = VaeImageProcessor.pt_to_numpy(pt_image) # (to [49, 512, 480, 3])
image_pil = VaeImageProcessor.numpy_to_pil(image_np)
video_path = utils.save_video(image_pil, fps=16)
if pbar:
pbar.update(1)
return video_path
def rife_inference_with_latents(model, latents):
rife_results = []
latents = latents.to(device)
for i in range(latents.size(0)):
# [f, c, w, h]
latent = latents[i]
frames = ssim_interpolation_rife(model, latent)
pt_image = torch.stack([frames[i].squeeze(0) for i in range(len(frames))]) # (to [f, c, w, h])
rife_results.append(pt_image)
return torch.stack(rife_results)