-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp_old.py
470 lines (400 loc) · 18.7 KB
/
app_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import math
import os
import random
import threading
import time
import argparse
import cv2
import tempfile
import imageio_ffmpeg
import gradio as gr
import torch
from PIL import Image
from diffusers import (
CogVideoXPipeline,
CogVideoXDPMScheduler,
CogVideoXVideoToVideoPipeline,
CogVideoXImageToVideoPipeline,
CogVideoXTransformer3DModel,
)
from diffusers.utils import export_to_video, load_video, load_image
from datetime import datetime, timedelta
from diffusers.image_processor import VaeImageProcessor
from openai import OpenAI
import moviepy.editor as mp
import utils
from rife_model import load_rife_model, rife_inference_with_latents
from huggingface_hub import hf_hub_download, snapshot_download
import gc
import platform
# Add imports for quantization
from transformers import T5EncoderModel
from diffusers import AutoencoderKLCogVideoX
def is_bf16_supported():
if torch.cuda.is_available():
return torch.cuda.is_bf16_supported()
return False
if is_bf16_supported():
default_dtype = torch.bfloat16
print("Using bfloat16 precision")
else:
default_dtype = torch.float16
print("Using float16 precision")
def open_folder(folder_path):
if platform.system() == "Windows":
os.startfile(folder_path)
elif platform.system() == "Linux":
os.system(f'xdg-open "{folder_path}"')
elif platform.system() == "Darwin": # macOS
os.system(f'open "{folder_path}"')
try:
from torchao.quantization import quantize_, int8_weight_only, int8_dynamic_activation_int8_weight
TORCHAO_AVAILABLE = True
except ImportError:
TORCHAO_AVAILABLE = False
device = "cuda" if torch.cuda.is_available() else "cpu"
hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran")
snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=default_dtype).to("cpu")
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
i2v_transformer = CogVideoXTransformer3DModel.from_pretrained(
"THUDM/CogVideoX-5b-I2V", subfolder="transformer", torch_dtype=default_dtype
)
os.makedirs("./outputs", exist_ok=True)
os.makedirs("./gradio_tmp", exist_ok=True)
upscale_model = utils.load_sd_upscale("model_real_esran/RealESRGAN_x4.pth", device)
frame_interpolation_model = load_rife_model("model_rife")
def load_and_quantize_model(quantization_type):
text_encoder = T5EncoderModel.from_pretrained("THUDM/CogVideoX-5b-I2V", subfolder="text_encoder", torch_dtype=default_dtype)
transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-5b-I2V", subfolder="transformer", torch_dtype=default_dtype)
vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-5b-I2V", subfolder="vae", torch_dtype=default_dtype)
if quantization_type == "int8" and TORCHAO_AVAILABLE:
quantize_(text_encoder, int8_weight_only())
quantize_(transformer, int8_weight_only())
quantize_(vae, int8_weight_only())
elif quantization_type == "fp8": # Check if GPU supports FP8
text_encoder = text_encoder.to(torch.float8_e4m3fn)
transformer = transformer.to(torch.float8_e4m3fn)
vae = vae.to(torch.float8_e4m3fn)
return text_encoder, transformer, vae
def resize_if_unfit(input_video, progress=gr.Progress(track_tqdm=True)):
width, height = get_video_dimensions(input_video)
if width == 720 and height == 480:
processed_video = input_video
else:
processed_video = center_crop_resize(input_video)
return processed_video
def get_video_dimensions(input_video_path):
reader = imageio_ffmpeg.read_frames(input_video_path)
metadata = next(reader)
return metadata["size"]
def center_crop_resize(input_video_path, target_width=720, target_height=480):
cap = cv2.VideoCapture(input_video_path)
orig_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
orig_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
orig_fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
width_factor = target_width / orig_width
height_factor = target_height / orig_height
resize_factor = max(width_factor, height_factor)
inter_width = int(orig_width * resize_factor)
inter_height = int(orig_height * resize_factor)
target_fps = 8
ideal_skip = max(0, math.ceil(orig_fps / target_fps) - 1)
skip = min(5, ideal_skip) # Cap at 5
while (total_frames / (skip + 1)) < 49 and skip > 0:
skip -= 1
processed_frames = []
frame_count = 0
total_read = 0
while frame_count < 49 and total_read < total_frames:
ret, frame = cap.read()
if not ret:
break
if total_read % (skip + 1) == 0:
resized = cv2.resize(frame, (inter_width, inter_height), interpolation=cv2.INTER_AREA)
start_x = (inter_width - target_width) // 2
start_y = (inter_height - target_height) // 2
cropped = resized[start_y : start_y + target_height, start_x : start_x + target_width]
processed_frames.append(cropped)
frame_count += 1
total_read += 1
cap.release()
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
temp_video_path = temp_file.name
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(temp_video_path, fourcc, target_fps, (target_width, target_height))
for frame in processed_frames:
out.write(frame)
out.release()
return temp_video_path
def infer(
prompt: str,
image_input: str,
video_input: str,
video_strenght: float,
num_inference_steps: int,
guidance_scale: float,
seed: int = -1,
use_cpu_offload: bool = True,
use_slicing: bool = True,
use_tiling: bool = True,
quantization_type: str = "none",
progress=gr.Progress(track_tqdm=True),
):
if seed == -1:
seed = random.randint(0, 2**8 - 1)
text_encoder, transformer, vae = load_and_quantize_model(quantization_type)
if video_input is not None:
video = load_video(video_input)[:49] # Limit to 49 frames
pipe_video = CogVideoXVideoToVideoPipeline.from_pretrained(
"THUDM/CogVideoX-5b",
transformer=transformer,
vae=vae,
scheduler=pipe.scheduler,
tokenizer=pipe.tokenizer,
text_encoder=text_encoder,
torch_dtype=default_dtype,
).to(device)
if use_cpu_offload:
pipe_video.enable_sequential_cpu_offload()
if use_slicing:
pipe_video.vae.enable_slicing()
if use_tiling:
pipe_video.vae.enable_tiling()
video_pt = pipe_video(
video=video,
prompt=prompt,
num_inference_steps=num_inference_steps,
num_videos_per_prompt=1,
strength=video_strenght,
use_dynamic_cfg=True,
output_type="pt",
guidance_scale=guidance_scale,
generator=torch.Generator(device="cpu").manual_seed(seed),
).frames
gc.collect()
torch.cuda.empty_cache()
elif image_input is not None:
pipe_image = CogVideoXImageToVideoPipeline.from_pretrained(
"THUDM/CogVideoX-5b-I2V",
transformer=transformer,
vae=vae,
scheduler=pipe.scheduler,
tokenizer=pipe.tokenizer,
text_encoder=text_encoder,
torch_dtype=default_dtype,
).to(device)
if use_cpu_offload:
pipe_image.enable_sequential_cpu_offload()
if use_slicing:
pipe_image.vae.enable_slicing()
if use_tiling:
pipe_image.vae.enable_tiling()
image_input = Image.fromarray(image_input).resize(size=(720, 480)) # Convert to PIL
image = load_image(image_input)
video_pt = pipe_image(
image=image,
prompt=prompt,
num_inference_steps=num_inference_steps,
num_videos_per_prompt=1,
use_dynamic_cfg=True,
output_type="pt",
guidance_scale=guidance_scale,
generator=torch.Generator(device="cpu").manual_seed(seed),
).frames
gc.collect()
torch.cuda.empty_cache()
else:
pipe.to(device)
pipe.transformer = transformer
pipe.vae = vae
pipe.text_encoder = text_encoder
if use_cpu_offload:
pipe.enable_sequential_cpu_offload()
if use_slicing:
pipe.vae.enable_slicing()
if use_tiling:
pipe.vae.enable_tiling()
video_pt = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=num_inference_steps,
num_frames=49,
use_dynamic_cfg=True,
output_type="pt",
guidance_scale=guidance_scale,
generator=torch.Generator(device="cpu").manual_seed(seed),
).frames
gc.collect()
return (video_pt, seed)
def get_unique_filename(base_path, extension):
directory = os.path.dirname(base_path)
filename = os.path.basename(base_path)
name, ext = os.path.splitext(filename)
counter = 0
while True:
if counter == 0:
new_filename = f"{name}{extension}"
else:
new_filename = f"{name}_{counter:04d}{extension}"
new_path = os.path.join(directory, new_filename)
if not os.path.exists(new_path):
return new_path
counter += 1
def delete_old_files():
while True:
now = datetime.now()
cutoff = now - timedelta(minutes=10)
directories = ["./outputs", "./gradio_tmp"]
for directory in directories:
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
if os.path.isfile(file_path):
file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
if file_mtime < cutoff:
os.remove(file_path)
time.sleep(600)
threading.Thread(target=delete_old_files, daemon=True).start()
def generate(
prompt,
image_input,
video_input,
video_strength,
seed_value,
num_inference_steps,
guidance_scale,
scale_status,
rife_status,
use_cpu_offload,
use_slicing,
use_tiling,
quantization_type,
num_generations,
progress=gr.Progress(track_tqdm=True)
):
all_video_paths = []
all_gif_paths = []
all_seeds = []
for i in range(num_generations):
latents, seed = infer(
prompt,
image_input,
video_input,
video_strength,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
seed=seed_value if i == 0 else -1, # Use provided seed only for first generation
use_cpu_offload=use_cpu_offload,
use_slicing=use_slicing,
use_tiling=use_tiling,
quantization_type=quantization_type,
progress=progress,
)
if rife_status:
latents = rife_inference_with_latents(frame_interpolation_model, latents)
if scale_status:
latents = utils.upscale_batch_and_concatenate(upscale_model, latents, device)
batch_size = latents.shape[0]
batch_video_frames = []
for batch_idx in range(batch_size):
pt_image = latents[batch_idx]
pt_image = torch.stack([pt_image[i] for i in range(pt_image.shape[0])])
image_np = VaeImageProcessor.pt_to_numpy(pt_image)
image_pil = VaeImageProcessor.numpy_to_pil(image_np)
batch_video_frames.append(image_pil)
base_filename = "output_" if video_input is None else os.path.splitext(os.path.basename(video_input))[0]
video_path = get_unique_filename(os.path.join("outputs", f"{base_filename}.mp4"), ".mp4")
utils.save_video(batch_video_frames[0], fps=math.ceil((len(batch_video_frames[0]) - 1) / 6), output_path=video_path)
gif_path = get_unique_filename(video_path.replace(".mp4", ".gif"), ".gif")
clip = mp.VideoFileClip(video_path)
clip = clip.set_fps(8)
clip = clip.resize(height=240)
clip.write_gif(gif_path, fps=8)
all_video_paths.append(video_path)
all_gif_paths.append(gif_path)
all_seeds.append(seed)
# Return only the last generated video for display
video_update = gr.update(visible=True, value=all_video_paths[-1])
gif_update = gr.update(visible=True, value=all_gif_paths[-1])
seed_update = gr.update(visible=True, value=all_seeds[-1])
return all_video_paths[-1], video_update, gif_update, seed_update
with gr.Blocks() as demo:
gr.Markdown("""
<div style="text-align: center; font-size: 22px; font-weight: bold; margin-bottom: 10px;">
CogVideoX-5B by SECourses V1
<a href="https://www.patreon.com/posts/112848192">www.patreon.com/posts/112836177</a>
</div>
<div style="text-align: center; font-size: 18px; font-weight: bold; margin-bottom: 0px;">
- The followings fixed and perfectly works:<br>
* Works on Windows, Runpod & Massed Compute | Super-Resolution (720 × 480 -> 2880 × 1920)<br>
* Properly saving all generations into outputs folder
</div>
""")
#Frame Interpolation (8fps -> 16fps) |
with gr.Row():
with gr.Column():
with gr.Accordion("I2V: Image Input (cannot be used simultaneously with video input)", open=True):
image_input = gr.Image(label="Input Image (will be cropped to 720 * 480)",height=500)
with gr.Accordion("V2V: Video Input (cannot be used simultaneously with image input)", open=False):
video_input = gr.Video(label="Input Video (will be cropped to 49 frames, 6 seconds at 8fps)",height=500)
strength = gr.Slider(0.1, 1.0, value=0.8, step=0.01, label="Strength")
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
with gr.Group():
with gr.Column():
with gr.Row():
seed_param = gr.Number(
label="Inference Seed (Enter a positive number, -1 for random)", value=-1
)
with gr.Row():
num_inference_steps = gr.Slider(1, 100, value=50, step=1, label="Number of Inference Steps")
guidance_scale = gr.Slider(1.0, 20.0, value=7.0, step=0.1, label="Guidance Scale")
with gr.Row():
enable_scale = gr.Checkbox(label="Super-Resolution (720 × 480 -> 2880 × 1920)", value=False)
enable_rife = gr.Checkbox(label="Frame Interpolation (8fps -> 16fps)", value=False)
with gr.Row():
use_cpu_offload = gr.Checkbox(label="Use CPU Offload", value=True)
use_slicing = gr.Checkbox(label="Use Slicing", value=False)
use_tiling = gr.Checkbox(label="Use Tiling", value=False)
with gr.Row():
quantization_type = gr.Radio(["none", "int8", "fp8"], label="Quantization Type", value="none")
with gr.Row():
num_generations = gr.Slider(1, 999, value=1, step=1, label="Number of Generations")
gr.Markdown(
"✨In this demo, we use [RIFE](https://github.com/hzwer/ECCV2022-RIFE) for frame interpolation and [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN) for upscaling(Super-Resolution).<br> The entire process is based on open-source solutions."
)
generate_button = gr.Button("🎬 Generate Video")
with gr.Column():
video_output = gr.Video(label="CogVideoX Generate Video", width=720, height=480)
open_outputs_button = gr.Button("Open Results Folder")
open_outputs_button.click(fn=lambda: open_folder("outputs"))
gr.Markdown(
"""Currently on Windows we have to use CPU Offloading due to shameless OpenAI who takes 10s of billions from Microsoft not giving any support to Windows<br><br>I am trying to find a solution for this but because of this, it will be super slow<br><br>On Linux or WSL you can extra install torchao and use int8<br><br>Because of the Lazy coding of CogVideo team, FP8 only works on H100 and above GPUs :/ I am still searching a solution for this as well<br><br>If your GPU VRAM is below 16 GB, enable Use Slicing and Use Tiling as well (they are used after all steps done)<br><br>Without CPU offloading and without using FP8 or Int8 it uses 26 GB VRAM thus we have to use CPU offloading
<br> <br>
Text to video, Video to Video not working at all yet I opened an issue for this
<br><br>
Frame Interpolation (8fps -> 16fps) not working properly yet I opened an issue for this
<br><br>
You can use here to generate caption : https://poe.com/Claude-3.5-Sonnet
<br>Upload image and use below prompt
<br>
analyze the attached image and write me a detailed video flow description to animate it in a image to video animation generative ai model<br>
e.g. like<br>
Fireworks display over night city. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic."""
)
with gr.Row():
download_video_button = gr.File(label="📥 Download Video", visible=False)
download_gif_button = gr.File(label="📥 Download GIF", visible=False)
seed_text = gr.Number(label="Seed Used for Video Generation", visible=False)
generate_button.click(
generate,
inputs=[prompt, image_input, video_input, strength, seed_param, num_inference_steps, guidance_scale, enable_scale, enable_rife, use_cpu_offload, use_slicing, use_tiling, quantization_type, num_generations],
outputs=[video_output, download_video_button, download_gif_button, seed_text],
)
video_input.upload(resize_if_unfit, inputs=[video_input], outputs=[video_input])
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the CogVideoX demo")
parser.add_argument("--share", action="store_true", help="Enable sharing of the Gradio interface")
args = parser.parse_args()
demo.queue(max_size=15)
demo.launch(inbrowser=True, share=args.share)