forked from Gabesarch/HELPER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
43 lines (38 loc) · 1.15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from arguments import args
import torch
import numpy as np
import random
import threading
import time
import os
import sys
import ipdb
st = ipdb.set_trace
# fix the seed for reproducibility
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
def main():
print("Mode:", args.mode)
print(type(args.mode))
if 'teach_eval_edh' in args.mode or 'teach_eval_tfd' in args.mode:
from models.teach_eval_embodied_llm import run_teach
run_teach()
elif 'teach_eval_custom' in args.mode:
from models.teach_eval_custom import run_custom
run_custom()
elif 'teach_eval_continual' in args.mode:
if args.mod_api_continual:
from models.teach_eval_continual_modapi import run_continual
else:
from models.teach_eval_continual import run_continual
run_continual()
elif 'teach_train_depth' in args.mode:
from models.teach_train_depth import Ai2Thor as Ai2Thor_DEPTH
aithor_depth = Ai2Thor_DEPTH()
aithor_depth.run_episodes()
else:
raise NotImplementedError
print("main finished.")
if __name__ == '__main__':
main()