forked from facebookresearch/StyleNeRF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
launcher.py
189 lines (164 loc) · 7.17 KB
/
launcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import random, shlex, datetime
import os, sys, subprocess, shutil
from glob import iglob
def copy_all_python_files(
source, snapshot_main_dir, code_snapshot_hash, recurse_dirs="fairseq"
):
"""
Copies following files from source to destination:
a) all *.py files at direct source location.
b) all fairseq/*.py recursively (default); recurse through comma-separated recurse_dirs
"""
os.makedirs(snapshot_main_dir, exist_ok=True)
destination = os.path.join(snapshot_main_dir, code_snapshot_hash)
assert not os.path.exists(destination), "Code snapshot: {0} alredy exists".format(
code_snapshot_hash
)
os.makedirs(destination)
def all_pys(recurse_dirs):
yield from iglob(os.path.join(source, "*.py"))
for d in recurse_dirs.split(","):
yield from iglob(os.path.join(source, d, "**/*.py"), recursive=True)
yield from iglob(os.path.join(source, d, "**/*.so"), recursive=True)
yield from iglob(os.path.join(source, d, "**/*.yaml"), recursive=True)
for filepath in all_pys(recurse_dirs):
directory, filename = os.path.split(filepath)
if directory:
os.makedirs(os.path.join(destination, directory), exist_ok=True)
shutil.copy2(
os.path.join(source, filepath), os.path.join(destination, filepath)
)
return destination
def launch_cluster(slurm_args, model_args):
# prepare
jobname = slurm_args.get('job-name', 'test')
if slurm_args.get('workplace') is not None:
os.makedirs(slurm_args.get('workplace'), exist_ok=True)
if slurm_args.get('workplace') is not None:
train_log = os.path.join(slurm_args['workplace'], 'train.%A.out')
train_stderr = os.path.join(slurm_args['workplace'], 'train.%A.stderr.%j')
else:
train_log = train_stderr = None
nodes, gpus = slurm_args.get('nodes', 1), slurm_args.get('gpus', 8)
if not slurm_args.get('local', False):
assert (train_log is not None) and (train_stderr is not None)
# parse slurm
destination = ""
# if slurm_args.get('workplace', None) is not None:
# # Currently hash is just the current time in ISO format.
# # Remove colons since they cannot be escaped in POSIX PATH env vars.
# code_snapshot_hash = datetime.datetime.now().isoformat().replace(":", "_")
# destination = copy_all_python_files(
# ".",
# os.path.join(slurm_args['workplace'], "slurm_snapshot_code"),
# code_snapshot_hash,
# 'fairseq',
# )
# os.environ["PYTHONPATH"] = destination + ":" + os.environ.get("PYTHONPATH", "")
# print('creat snapshot at {}'.format(destination))
train_cmd = ['python', os.path.join(destination, 'run_train.py'), ]
train_cmd.extend([f'gpus={nodes * gpus}'])
train_cmd.extend([f'port={get_random_port()}'])
train_cmd += model_args
base_srun_cmd = [
'srun',
'--job-name', jobname,
'--output', train_log,
'--error', train_stderr,
'--open-mode', 'append',
'--unbuffered',
]
srun_cmd = base_srun_cmd + train_cmd
srun_cmd_str = ' '.join(map(shlex.quote, srun_cmd))
srun_cmd_str = srun_cmd_str + ' &'
sbatch_cmd = [
'sbatch',
'--job-name', jobname,
'--partition', slurm_args.get('partition', 'learnfair'),
'--gres', 'gpu:volta:{}'.format(gpus),
'--nodes', str(nodes),
'--ntasks-per-node', '1',
'--cpus-per-task', '20',
'--output', train_log,
'--error', train_stderr,
'--open-mode', 'append',
'--signal', 'B:USR1@180',
'--time', slurm_args.get('time', '4320'),
'--mem', slurm_args.get('mem', '500gb'),
'--exclusive',
'--exclude', 'learnfair5035,learnfair5289,learnfair5088,learnfair5028,learnfair5032,learnfair5033,learnfair5056,learnfair5098,learnfair5122,learnfair5124,learnfair5156,learnfair5036,learnfair5258,learnfair5205,learnfair5201,learnfair5240,learnfair5087,learnfair5119,learnfair5246,learnfair7474,learnfair7585,learnfair5150,learnfair5166,learnfair5215,learnfair5142,learnfair5070,learnfair5236,learnfair7523'
]
if 'constraint' in slurm_args:
sbatch_cmd += ['-C', slurm_args.get('constraint')]
if 'comment' in slurm_args:
sbatch_cmd += ['--comment', slurm_args.get('comment')]
wrapped_cmd = requeue_support() + '\n' + srun_cmd_str + ' \n wait $! \n sleep 610 & \n wait $!'
sbatch_cmd += ['--wrap', wrapped_cmd]
sbatch_cmd_str = ' '.join(map(shlex.quote, sbatch_cmd))
# start training
env = os.environ.copy()
env['OMP_NUM_THREADS'] = '2'
env['NCCL_SOCKET_IFNAME'] = ''
if env.get('SLURM_ARGS', None) is not None:
del env['SLURM_ARGS']
if nodes > 1:
env['NCCL_SOCKET_IFNAME'] = '^docker0,lo'
env['NCCL_DEBUG'] = 'INFO'
if slurm_args.get('dry-run', False):
print(sbatch_cmd_str)
elif slurm_args.get('local', False):
assert nodes == 1, 'distributed training cannot be combined with local'
if 'CUDA_VISIBLE_DEVICES' not in env:
env['CUDA_VISIBLE_DEVICES'] = ','.join(map(str, range(gpus)))
env['NCCL_DEBUG'] = 'INFO'
if train_log is not None:
train_proc = subprocess.Popen(train_cmd, env=env, stdout=subprocess.PIPE)
tee_proc = subprocess.Popen(['tee', '-a', train_log], stdin=train_proc.stdout)
train_proc.stdout.close()
train_proc.wait()
tee_proc.wait()
else:
train_proc = subprocess.Popen(train_cmd, env=env)
train_proc.wait()
else:
with open(train_log, 'a') as train_log_h:
print(f'running command: {sbatch_cmd_str}\n')
with subprocess.Popen(sbatch_cmd, stdout=subprocess.PIPE, env=env) as train_proc:
stdout = train_proc.stdout.read().decode('utf-8')
print(stdout, file=train_log_h)
try:
job_id = int(stdout.rstrip().split()[-1])
return job_id
except IndexError:
return None
def launch(slurm_args, model_args):
job_id = launch_cluster(slurm_args, model_args)
if job_id is not None:
print('Launched {}'.format(job_id))
else:
print('Failed.')
def requeue_support():
return """
trap_handler () {
echo "Caught signal: " $1
# SIGTERM must be bypassed
if [ "$1" = "TERM" ]; then
echo "bypass sigterm"
else
# Submit a new job to the queue
echo "Requeuing " $SLURM_JOB_ID
scontrol requeue $SLURM_JOB_ID
fi
}
# Install signal handler
trap 'trap_handler USR1' USR1
trap 'trap_handler TERM' TERM
"""
def get_random_port():
old_state = random.getstate()
random.seed()
port = random.randint(10000, 20000)
random.setstate(old_state)
return port