forked from gaochen315/DynamicNeRF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_nerf.py
761 lines (639 loc) · 34.9 KB
/
run_nerf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
import os
import time
import torch
import imageio
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from render_utils import *
from run_nerf_helpers import *
from load_llff import *
from utils.flow_utils import flow_to_image
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def config_parser():
import configargparse
parser = configargparse.ArgumentParser()
parser.add_argument('--config', is_config_file=True,
help='config file path')
parser.add_argument("--expname", type=str,
help='experiment name')
parser.add_argument("--basedir", type=str, default='./logs/',
help='where to store ckpts and logs')
parser.add_argument("--datadir", type=str, default='./data/llff/fern',
help='input data directory')
# training options
parser.add_argument("--netdepth", type=int, default=8,
help='layers in network')
parser.add_argument("--netwidth", type=int, default=256,
help='channels per layer')
parser.add_argument("--netdepth_fine", type=int, default=8,
help='layers in fine network')
parser.add_argument("--netwidth_fine", type=int, default=256,
help='channels per layer in fine network')
parser.add_argument("--N_rand", type=int, default=32*32*4,
help='batch size (number of random rays per gradient step)')
parser.add_argument("--lrate", type=float, default=5e-4,
help='learning rate')
parser.add_argument("--lrate_decay", type=int, default=300000,
help='exponential learning rate decay')
parser.add_argument("--chunk", type=int, default=1024*128,
help='number of rays processed in parallel, decrease if running out of memory')
parser.add_argument("--netchunk", type=int, default=1024*128,
help='number of pts sent through network in parallel, decrease if running out of memory')
parser.add_argument("--no_reload", action='store_true',
help='do not reload weights from saved ckpt')
parser.add_argument("--ft_path", type=str, default=None,
help='specific weights npy file to reload for coarse network')
parser.add_argument("--random_seed", type=int, default=1,
help='fix random seed for repeatability')
# rendering options
parser.add_argument("--N_samples", type=int, default=64,
help='number of coarse samples per ray')
parser.add_argument("--N_importance", type=int, default=0,
help='number of additional fine samples per ray')
parser.add_argument("--perturb", type=float, default=1.,
help='set to 0. for no jitter, 1. for jitter')
parser.add_argument("--use_viewdirs", action='store_true',
help='use full 5D input instead of 3D')
parser.add_argument("--use_viewdirsDyn", action='store_true',
help='use full 5D input instead of 3D for D-NeRF')
parser.add_argument("--i_embed", type=int, default=0,
help='set 0 for default positional encoding, -1 for none')
parser.add_argument("--multires", type=int, default=10,
help='log2 of max freq for positional encoding (3D location)')
parser.add_argument("--multires_views", type=int, default=4,
help='log2 of max freq for positional encoding (2D direction)')
parser.add_argument("--raw_noise_std", type=float, default=0.,
help='std dev of noise added to regularize sigma_a output, 1e0 recommended')
parser.add_argument("--render_only", action='store_true',
help='do not optimize, reload weights and render out render_poses path')
# dataset options
parser.add_argument("--dataset_type", type=str, default='llff',
help='options: llff')
# llff flags
parser.add_argument("--factor", type=int, default=8,
help='downsample factor for LLFF images')
parser.add_argument("--no_ndc", action='store_true',
help='do not use normalized device coordinates (set for non-forward facing scenes)')
parser.add_argument("--lindisp", action='store_true',
help='sampling linearly in disparity rather than depth')
parser.add_argument("--spherify", action='store_true',
help='set for spherical 360 scenes')
# logging/saving options
parser.add_argument("--i_print", type=int, default=500,
help='frequency of console printout and metric logging')
parser.add_argument("--i_img", type=int, default=500,
help='frequency of tensorboard image logging')
parser.add_argument("--i_weights", type=int, default=10000,
help='frequency of weight ckpt saving')
parser.add_argument("--i_testset", type=int, default=50000,
help='frequency of testset saving')
parser.add_argument("--i_video", type=int, default=50000,
help='frequency of render_poses video saving')
parser.add_argument("--N_iters", type=int, default=1000000,
help='number of training iterations')
# Dynamic NeRF lambdas
parser.add_argument("--dynamic_loss_lambda", type=float, default=1.,
help='lambda of dynamic loss')
parser.add_argument("--static_loss_lambda", type=float, default=1.,
help='lambda of static loss')
parser.add_argument("--full_loss_lambda", type=float, default=3.,
help='lambda of full loss')
parser.add_argument("--depth_loss_lambda", type=float, default=0.04,
help='lambda of depth loss')
parser.add_argument("--order_loss_lambda", type=float, default=0.1,
help='lambda of order loss')
parser.add_argument("--flow_loss_lambda", type=float, default=0.02,
help='lambda of optical flow loss')
parser.add_argument("--slow_loss_lambda", type=float, default=0.1,
help='lambda of sf slow regularization')
parser.add_argument("--smooth_loss_lambda", type=float, default=0.1,
help='lambda of sf smooth regularization')
parser.add_argument("--consistency_loss_lambda", type=float, default=0.1,
help='lambda of sf cycle consistency regularization')
parser.add_argument("--mask_loss_lambda", type=float, default=0.1,
help='lambda of the mask loss')
parser.add_argument("--sparse_loss_lambda", type=float, default=0.1,
help='lambda of sparse loss')
parser.add_argument("--DyNeRF_blending", action='store_true',
help='use Dynamic NeRF to predict blending weight')
parser.add_argument("--pretrain", action='store_true',
help='Pretrain the StaticneRF')
parser.add_argument("--ft_path_S", type=str, default=None,
help='specific weights npy file to reload for StaticNeRF')
# For rendering teasers
parser.add_argument("--frame2dolly", type=int, default=-1,
help='choose frame to perform dolly zoom')
parser.add_argument("--x_trans_multiplier", type=float, default=1.,
help='x_trans_multiplier')
parser.add_argument("--y_trans_multiplier", type=float, default=0.33,
help='y_trans_multiplier')
parser.add_argument("--z_trans_multiplier", type=float, default=5.,
help='z_trans_multiplier')
parser.add_argument("--num_novelviews", type=int, default=60,
help='num_novelviews')
parser.add_argument("--focal_decrease", type=float, default=200,
help='focal_decrease')
return parser
def train():
parser = config_parser()
args = parser.parse_args()
if args.random_seed is not None:
print('Fixing random seed', args.random_seed)
np.random.seed(args.random_seed)
# Load data
if args.dataset_type == 'llff':
frame2dolly = args.frame2dolly
images, invdepths, masks, poses, bds, \
render_poses, render_focals, grids = load_llff_data(args, args.datadir,
args.factor,
frame2dolly=frame2dolly,
recenter=True, bd_factor=.9,
spherify=args.spherify)
hwf = poses[0, :3, -1]
poses = poses[:, :3, :4]
num_img = float(poses.shape[0])
assert len(poses) == len(images)
print('Loaded llff', images.shape,
render_poses.shape, hwf, args.datadir)
# Use all views to train
i_train = np.array([i for i in np.arange(int(images.shape[0]))])
print('DEFINING BOUNDS')
if args.no_ndc:
raise NotImplementedError
near = np.ndarray.min(bds) * .9
far = np.ndarray.max(bds) * 1.
else:
near = 0.
far = 1.
print('NEAR FAR', near, far)
else:
print('Unknown dataset type', args.dataset_type, 'exiting')
return
# Cast intrinsics to right types
H, W, focal = hwf
H, W = int(H), int(W)
hwf = [H, W, focal]
# Create log dir and copy the config file
basedir = args.basedir
expname = args.expname
os.makedirs(os.path.join(basedir, expname), exist_ok=True)
if not args.render_only:
f = os.path.join(basedir, expname, 'args.txt')
with open(f, 'w') as file:
for arg in sorted(vars(args)):
attr = getattr(args, arg)
file.write('{} = {}\n'.format(arg, attr))
if args.config is not None:
f = os.path.join(basedir, expname, 'config.txt')
with open(f, 'w') as file:
file.write(open(args.config, 'r').read())
# Create nerf model
render_kwargs_train, render_kwargs_test, start, grad_vars, optimizer = create_nerf(args)
global_step = start
bds_dict = {
'near': near,
'far': far,
'num_img': num_img,
}
render_kwargs_train.update(bds_dict)
render_kwargs_test.update(bds_dict)
# Short circuit if only rendering out from trained model
if args.render_only:
print('RENDER ONLY')
i = start - 1
# Change time and change view at the same time.
time2render = np.concatenate((np.repeat((i_train / float(num_img) * 2. - 1.0), 4),
np.repeat((i_train / float(num_img) * 2. - 1.0)[::-1][1:-1], 4)))
if len(time2render) > len(render_poses):
pose2render = np.tile(render_poses, (int(np.ceil(len(time2render) / len(render_poses))), 1, 1))
pose2render = pose2render[:len(time2render)]
pose2render = torch.Tensor(pose2render)
else:
time2render = np.tile(time2render, int(np.ceil(len(render_poses) / len(time2render))))
time2render = time2render[:len(render_poses)]
pose2render = torch.Tensor(render_poses)
result_type = 'novelviewtime'
testsavedir = os.path.join(
basedir, expname, result_type + '_{:06d}'.format(i))
os.makedirs(testsavedir, exist_ok=True)
with torch.no_grad():
ret = render_path(pose2render, time2render,
hwf, args.chunk, render_kwargs_test, savedir=testsavedir)
moviebase = os.path.join(
testsavedir, '{}_{}_{:06d}_'.format(expname, result_type, i))
save_res(moviebase, ret)
# Fix view (first view) and change time.
pose2render = torch.Tensor(poses[0:1, ...]).expand([int(num_img), 3, 4])
time2render = i_train / float(num_img) * 2. - 1.0
result_type = 'testset_view000'
testsavedir = os.path.join(
basedir, expname, result_type + '_{:06d}'.format(i))
os.makedirs(testsavedir, exist_ok=True)
with torch.no_grad():
ret = render_path(pose2render, time2render,
hwf, args.chunk, render_kwargs_test, savedir=testsavedir)
moviebase = os.path.join(
testsavedir, '{}_{}_{:06d}_'.format(expname, result_type, i))
save_res(moviebase, ret)
return
N_rand = args.N_rand
# Move training data to GPU
images = torch.Tensor(images)
invdepths = torch.Tensor(invdepths)
masks = 1.0 - torch.Tensor(masks)
poses = torch.Tensor(poses)
grids = torch.Tensor(grids)
print('Begin')
print('TRAIN views are', i_train)
# Summary writers
writer = SummaryWriter(os.path.join(basedir, 'summaries', expname))
decay_iteration = max(25, num_img)
# Pre-train StaticNeRF
if args.pretrain:
render_kwargs_train.update({'pretrain': True})
# Pre-train StaticNeRF first and use DynamicNeRF to blend
assert args.DyNeRF_blending == True
if args.ft_path_S is not None and args.ft_path_S != 'None':
# Load Pre-trained StaticNeRF
ckpt_path = args.ft_path_S
print('Reloading StaticNeRF from', ckpt_path)
ckpt = torch.load(ckpt_path)
render_kwargs_train['network_fn_s'].load_state_dict(ckpt['network_fn_s_state_dict'])
else:
# Train StaticNeRF from scratch
for i in range(args.N_iters):
time0 = time.time()
# No raybatching as we need to take random rays from one image at a time
img_i = np.random.choice(i_train)
t = img_i / num_img * 2. - 1.0 # time of the current frame
target = images[img_i]
pose = poses[img_i, :3, :4]
mask = masks[img_i] # Static region mask
rays_o, rays_d = get_rays(H, W, focal, torch.Tensor(pose)) # (H, W, 3), (H, W, 3)
coords_s = torch.stack((torch.where(mask >= 0.5)), -1)
select_inds_s = np.random.choice(coords_s.shape[0], size=[N_rand], replace=False)
select_coords = coords_s[select_inds_s]
def select_batch(value, select_coords=select_coords):
return value[select_coords[:, 0], select_coords[:, 1]]
rays_o = select_batch(rays_o) # (N_rand, 3)
rays_d = select_batch(rays_d) # (N_rand, 3)
target_rgb = select_batch(target)
batch_mask = select_batch(mask[..., None])
batch_rays = torch.stack([rays_o, rays_d], 0)
##### Core optimization loop #####
ret = render(t,
False,
H, W, focal,
chunk=args.chunk,
rays=batch_rays,
**render_kwargs_train)
optimizer.zero_grad()
# Compute MSE loss between rgb_s and true RGB.
img_s_loss = img2mse(ret['rgb_map_s'], target_rgb)
psnr_s = mse2psnr(img_s_loss)
loss = args.static_loss_lambda * img_s_loss
loss.backward()
optimizer.step()
# Learning rate decay.
decay_rate = 0.1
decay_steps = args.lrate_decay
new_lrate = args.lrate * (decay_rate ** (global_step / decay_steps))
for param_group in optimizer.param_groups:
param_group['lr'] = new_lrate
dt = time.time() - time0
print(f"Pretraining step: {global_step}, Loss: {loss}, Time: {dt}, expname: {expname}")
if i % args.i_print == 0:
writer.add_scalar("loss", loss.item(), i)
writer.add_scalar("lr", new_lrate, i)
writer.add_scalar("psnr_s", psnr_s.item(), i)
if i % args.i_img == 0:
target = images[img_i]
pose = poses[img_i, :3, :4]
mask = masks[img_i]
with torch.no_grad():
ret = render(t,
False,
H, W, focal,
chunk=1024*16,
c2w=pose,
**render_kwargs_test)
# Save out the validation image for Tensorboard-free monitoring
writer.add_image("rgb_holdout", target, global_step=i, dataformats='HWC')
writer.add_image("mask", mask, global_step=i, dataformats='HW')
writer.add_image("rgb_s", torch.clamp(ret['rgb_map_s'], 0., 1.), global_step=i, dataformats='HWC')
writer.add_image("depth_s", normalize_depth(ret['depth_map_s']), global_step=i, dataformats='HW')
writer.add_image("acc_s", ret['acc_map_s'], global_step=i, dataformats='HW')
global_step += 1
# Save the pretrained weight
torch.save({
'global_step': global_step,
'network_fn_s_state_dict': render_kwargs_train['network_fn_s'].state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, os.path.join(basedir, expname, 'Pretrained_S.tar'))
# Reset
render_kwargs_train.update({'pretrain': False})
global_step = start
# Fix the StaticNeRF and only train the DynamicNeRF
grad_vars_d = list(render_kwargs_train['network_fn_d'].parameters())
optimizer = torch.optim.Adam(params=grad_vars_d, lr=args.lrate, betas=(0.9, 0.999))
for i in range(start, args.N_iters):
time0 = time.time()
# Use frames at t-2, t-1, t, t+1, t+2 (adapted from NSFF)
if i < decay_iteration * 2000:
chain_5frames = False
else:
chain_5frames = True
# Lambda decay.
Temp = 1. / (10 ** (i // (decay_iteration * 1000)))
if i % (decay_iteration * 1000) == 0:
torch.cuda.empty_cache()
# No raybatching as we need to take random rays from one image at a time
img_i = np.random.choice(i_train)
t = img_i / num_img * 2. - 1.0 # time of the current frame
target = images[img_i]
pose = poses[img_i, :3, :4]
mask = masks[img_i] # Static region mask
invdepth = invdepths[img_i]
grid = grids[img_i]
rays_o, rays_d = get_rays(H, W, focal, torch.Tensor(pose)) # (H, W, 3), (H, W, 3)
coords_d = torch.stack((torch.where(mask < 0.5)), -1)
coords_s = torch.stack((torch.where(mask >= 0.5)), -1)
coords = torch.stack((torch.where(mask > -1)), -1)
# Evenly sample dynamic region and static region
select_inds_d = np.random.choice(coords_d.shape[0], size=[min(len(coords_d), N_rand//2)], replace=False)
select_inds_s = np.random.choice(coords_s.shape[0], size=[N_rand//2], replace=False)
select_coords = torch.cat([coords_s[select_inds_s],
coords_d[select_inds_d]], 0)
def select_batch(value, select_coords=select_coords):
return value[select_coords[:, 0], select_coords[:, 1]]
rays_o = select_batch(rays_o) # (N_rand, 3)
rays_d = select_batch(rays_d) # (N_rand, 3)
target_rgb = select_batch(target)
batch_grid = select_batch(grid) # (N_rand, 8)
batch_mask = select_batch(mask[..., None])
batch_invdepth = select_batch(invdepth)
batch_rays = torch.stack([rays_o, rays_d], 0)
##### Core optimization loop #####
ret = render(t,
chain_5frames,
H, W, focal,
chunk=args.chunk,
rays=batch_rays,
**render_kwargs_train)
optimizer.zero_grad()
loss = 0
loss_dict = {}
# Compute MSE loss between rgb_full and true RGB.
img_loss = img2mse(ret['rgb_map_full'], target_rgb)
psnr = mse2psnr(img_loss)
loss_dict['psnr'] = psnr
loss_dict['img_loss'] = img_loss
loss += args.full_loss_lambda * loss_dict['img_loss']
# Compute MSE loss between rgb_s and true RGB.
img_s_loss = img2mse(ret['rgb_map_s'], target_rgb, batch_mask)
psnr_s = mse2psnr(img_s_loss)
loss_dict['psnr_s'] = psnr_s
loss_dict['img_s_loss'] = img_s_loss
loss += args.static_loss_lambda * loss_dict['img_s_loss']
# Compute MSE loss between rgb_d and true RGB.
img_d_loss = img2mse(ret['rgb_map_d'], target_rgb)
psnr_d = mse2psnr(img_d_loss)
loss_dict['psnr_d'] = psnr_d
loss_dict['img_d_loss'] = img_d_loss
loss += args.dynamic_loss_lambda * loss_dict['img_d_loss']
# Compute MSE loss between rgb_d_f and true RGB.
img_d_f_loss = img2mse(ret['rgb_map_d_f'], target_rgb)
psnr_d_f = mse2psnr(img_d_f_loss)
loss_dict['psnr_d_f'] = psnr_d_f
loss_dict['img_d_f_loss'] = img_d_f_loss
loss += args.dynamic_loss_lambda * loss_dict['img_d_f_loss']
# Compute MSE loss between rgb_d_b and true RGB.
img_d_b_loss = img2mse(ret['rgb_map_d_b'], target_rgb)
psnr_d_b = mse2psnr(img_d_b_loss)
loss_dict['psnr_d_b'] = psnr_d_b
loss_dict['img_d_b_loss'] = img_d_b_loss
loss += args.dynamic_loss_lambda * loss_dict['img_d_b_loss']
# Motion loss.
# Compuate EPE between induced flow and true flow (forward flow).
# The last frame does not have forward flow.
if img_i < num_img - 1:
pts_f = ret['raw_pts_f']
weight = ret['weights_d']
pose_f = poses[img_i + 1, :3, :4]
induced_flow_f = induce_flow(H, W, focal, pose_f, weight, pts_f, batch_grid[..., :2])
flow_f_loss = img2mae(induced_flow_f, batch_grid[:, 2:4], batch_grid[:, 4:5])
loss_dict['flow_f_loss'] = flow_f_loss
loss += args.flow_loss_lambda * Temp * loss_dict['flow_f_loss']
# Compuate EPE between induced flow and true flow (backward flow).
# The first frame does not have backward flow.
if img_i > 0:
pts_b = ret['raw_pts_b']
weight = ret['weights_d']
pose_b = poses[img_i - 1, :3, :4]
induced_flow_b = induce_flow(H, W, focal, pose_b, weight, pts_b, batch_grid[..., :2])
flow_b_loss = img2mae(induced_flow_b, batch_grid[:, 5:7], batch_grid[:, 7:8])
loss_dict['flow_b_loss'] = flow_b_loss
loss += args.flow_loss_lambda * Temp * loss_dict['flow_b_loss']
# Slow scene flow. The forward and backward sceneflow should be small.
slow_loss = L1(ret['sceneflow_b']) + L1(ret['sceneflow_f'])
loss_dict['slow_loss'] = slow_loss
loss += args.slow_loss_lambda * loss_dict['slow_loss']
# Smooth scene flow. The summation of the forward and backward sceneflow should be small.
smooth_loss = compute_sf_smooth_loss(ret['raw_pts'],
ret['raw_pts_f'],
ret['raw_pts_b'],
H, W, focal)
loss_dict['smooth_loss'] = smooth_loss
loss += args.smooth_loss_lambda * loss_dict['smooth_loss']
# Spatial smooth scene flow. (loss adapted from NSFF)
sp_smooth_loss = compute_sf_smooth_s_loss(ret['raw_pts'], ret['raw_pts_f'], H, W, focal) \
+ compute_sf_smooth_s_loss(ret['raw_pts'], ret['raw_pts_b'], H, W, focal)
loss_dict['sp_smooth_loss'] = sp_smooth_loss
loss += args.smooth_loss_lambda * loss_dict['sp_smooth_loss']
# Consistency loss.
consistency_loss = L1(ret['sceneflow_f'] + ret['sceneflow_f_b']) + \
L1(ret['sceneflow_b'] + ret['sceneflow_b_f'])
loss_dict['consistency_loss'] = consistency_loss
loss += args.consistency_loss_lambda * loss_dict['consistency_loss']
# Mask loss.
mask_loss = L1(ret['blending'][batch_mask[:, 0].type(torch.bool)]) + \
img2mae(ret['dynamicness_map'][..., None], 1 - batch_mask)
loss_dict['mask_loss'] = mask_loss
if i < decay_iteration * 1000:
loss += args.mask_loss_lambda * loss_dict['mask_loss']
# Sparsity loss.
sparse_loss = entropy(ret['weights_d']) + entropy(ret['blending'])
loss_dict['sparse_loss'] = sparse_loss
loss += args.sparse_loss_lambda * loss_dict['sparse_loss']
# Depth constraint
# Depth in NDC space equals to negative disparity in Euclidean space.
depth_loss = compute_depth_loss(ret['depth_map_d'], -batch_invdepth)
loss_dict['depth_loss'] = depth_loss
loss += args.depth_loss_lambda * Temp * loss_dict['depth_loss']
# Order loss
order_loss = torch.mean(torch.square(ret['depth_map_d'][batch_mask[:, 0].type(torch.bool)] - \
ret['depth_map_s'].detach()[batch_mask[:, 0].type(torch.bool)]))
loss_dict['order_loss'] = order_loss
loss += args.order_loss_lambda * loss_dict['order_loss']
sf_smooth_loss = compute_sf_smooth_loss(ret['raw_pts_b'],
ret['raw_pts'],
ret['raw_pts_b_b'],
H, W, focal) + \
compute_sf_smooth_loss(ret['raw_pts_f'],
ret['raw_pts_f_f'],
ret['raw_pts'],
H, W, focal)
loss_dict['sf_smooth_loss'] = sf_smooth_loss
loss += args.smooth_loss_lambda * loss_dict['sf_smooth_loss']
if chain_5frames:
img_d_b_b_loss = img2mse(ret['rgb_map_d_b_b'], target_rgb)
loss_dict['img_d_b_b_loss'] = img_d_b_b_loss
loss += args.dynamic_loss_lambda * loss_dict['img_d_b_b_loss']
img_d_f_f_loss = img2mse(ret['rgb_map_d_f_f'], target_rgb)
loss_dict['img_d_f_f_loss'] = img_d_f_f_loss
loss += args.dynamic_loss_lambda * loss_dict['img_d_f_f_loss']
loss.backward()
optimizer.step()
# Learning rate decay.
decay_rate = 0.1
decay_steps = args.lrate_decay
new_lrate = args.lrate * (decay_rate ** (global_step / decay_steps))
for param_group in optimizer.param_groups:
param_group['lr'] = new_lrate
dt = time.time() - time0
print(f"Step: {global_step}, Loss: {loss}, Time: {dt}, chain_5frames: {chain_5frames}, expname: {expname}")
# Rest is logging
if i % args.i_weights==0:
path = os.path.join(basedir, expname, '{:06d}.tar'.format(i))
if args.N_importance > 0:
raise NotImplementedError
else:
torch.save({
'global_step': global_step,
'network_fn_d_state_dict': render_kwargs_train['network_fn_d'].state_dict(),
'network_fn_s_state_dict': render_kwargs_train['network_fn_s'].state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, path)
print('Saved weights at', path)
if i % args.i_video == 0 and i > 0:
# Change time and change view at the same time.
time2render = np.concatenate((np.repeat((i_train / float(num_img) * 2. - 1.0), 4),
np.repeat((i_train / float(num_img) * 2. - 1.0)[::-1][1:-1], 4)))
if len(time2render) > len(render_poses):
pose2render = np.tile(render_poses, (int(np.ceil(len(time2render) / len(render_poses))), 1, 1))
pose2render = pose2render[:len(time2render)]
pose2render = torch.Tensor(pose2render)
else:
time2render = np.tile(time2render, int(np.ceil(len(render_poses) / len(time2render))))
time2render = time2render[:len(render_poses)]
pose2render = torch.Tensor(render_poses)
result_type = 'novelviewtime'
testsavedir = os.path.join(
basedir, expname, result_type + '_{:06d}'.format(i))
os.makedirs(testsavedir, exist_ok=True)
with torch.no_grad():
ret = render_path(pose2render, time2render,
hwf, args.chunk, render_kwargs_test, savedir=testsavedir)
moviebase = os.path.join(
testsavedir, '{}_{}_{:06d}_'.format(expname, result_type, i))
save_res(moviebase, ret)
if i % args.i_testset == 0 and i > 0:
# Change view and time.
pose2render = torch.Tensor(poses)
time2render = i_train / float(num_img) * 2. - 1.0
result_type = 'testset'
testsavedir = os.path.join(
basedir, expname, result_type + '_{:06d}'.format(i))
os.makedirs(testsavedir, exist_ok=True)
with torch.no_grad():
ret = render_path(pose2render, time2render,
hwf, args.chunk, render_kwargs_test, savedir=testsavedir,
flows_gt_f=grids[:, :, :, 2:4], flows_gt_b=grids[:, :, :, 5:7])
moviebase = os.path.join(
testsavedir, '{}_{}_{:06d}_'.format(expname, result_type, i))
save_res(moviebase, ret)
# Fix view (first view) and change time.
pose2render = torch.Tensor(poses[0:1, ...].expand([int(num_img), 3, 4]))
time2render = i_train / float(num_img) * 2. - 1.0
result_type = 'testset_view000'
testsavedir = os.path.join(
basedir, expname, result_type + '_{:06d}'.format(i))
os.makedirs(testsavedir, exist_ok=True)
with torch.no_grad():
ret = render_path(pose2render, time2render,
hwf, args.chunk, render_kwargs_test, savedir=testsavedir)
moviebase = os.path.join(
testsavedir, '{}_{}_{:06d}_'.format(expname, result_type, i))
save_res(moviebase, ret)
# Fix time (the first timestamp) and change view.
pose2render = torch.Tensor(poses)
time2render = np.tile(i_train[0], [int(num_img)]) / float(num_img) * 2. - 1.0
result_type = 'testset_time000'
testsavedir = os.path.join(
basedir, expname, result_type + '_{:06d}'.format(i))
os.makedirs(testsavedir, exist_ok=True)
with torch.no_grad():
ret = render_path(pose2render, time2render,
hwf, args.chunk, render_kwargs_test, savedir=testsavedir)
moviebase = os.path.join(
testsavedir, '{}_{}_{:06d}_'.format(expname, result_type, i))
save_res(moviebase, ret)
if i % args.i_print == 0:
writer.add_scalar("loss", loss.item(), i)
writer.add_scalar("lr", new_lrate, i)
writer.add_scalar("Temp", Temp, i)
for loss_key in loss_dict:
writer.add_scalar(loss_key, loss_dict[loss_key].item(), i)
if i % args.i_img == 0:
# Log a rendered training view to Tensorboard.
# img_i = np.random.choice(i_train[1:-1])
target = images[img_i]
pose = poses[img_i, :3, :4]
mask = masks[img_i]
grid = grids[img_i]
invdepth = invdepths[img_i]
flow_f_img = flow_to_image(grid[..., 2:4].cpu().numpy())
flow_b_img = flow_to_image(grid[..., 5:7].cpu().numpy())
with torch.no_grad():
ret = render(t,
False,
H, W, focal,
chunk=1024*16,
c2w=pose,
**render_kwargs_test)
# The last frame does not have forward flow.
pose_f = poses[min(img_i + 1, int(num_img) - 1), :3, :4]
induced_flow_f = induce_flow(H, W, focal, pose_f, ret['weights_d'], ret['raw_pts_f'], grid[..., :2])
# The first frame does not have backward flow.
pose_b = poses[max(img_i - 1, 0), :3, :4]
induced_flow_b = induce_flow(H, W, focal, pose_b, ret['weights_d'], ret['raw_pts_b'], grid[..., :2])
induced_flow_f_img = flow_to_image(induced_flow_f.cpu().numpy())
induced_flow_b_img = flow_to_image(induced_flow_b.cpu().numpy())
psnr = mse2psnr(img2mse(ret['rgb_map_full'], target))
# Save out the validation image for Tensorboard-free monitoring
testimgdir = os.path.join(basedir, expname, 'tboard_val_imgs')
if i == 0:
os.makedirs(testimgdir, exist_ok=True)
imageio.imwrite(os.path.join(testimgdir, '{:06d}.png'.format(i)), to8b(ret['rgb_map_full'].cpu().numpy()))
writer.add_scalar("psnr_holdout", psnr.item(), i)
writer.add_image("rgb_holdout", target, global_step=i, dataformats='HWC')
writer.add_image("mask", mask, global_step=i, dataformats='HW')
writer.add_image("disp", torch.clamp(invdepth / percentile(invdepth, 97), 0., 1.), global_step=i, dataformats='HW')
writer.add_image("rgb", torch.clamp(ret['rgb_map_full'], 0., 1.), global_step=i, dataformats='HWC')
writer.add_image("depth", normalize_depth(ret['depth_map_full']), global_step=i, dataformats='HW')
writer.add_image("acc", ret['acc_map_full'], global_step=i, dataformats='HW')
writer.add_image("rgb_s", torch.clamp(ret['rgb_map_s'], 0., 1.), global_step=i, dataformats='HWC')
writer.add_image("depth_s", normalize_depth(ret['depth_map_s']), global_step=i, dataformats='HW')
writer.add_image("acc_s", ret['acc_map_s'], global_step=i, dataformats='HW')
writer.add_image("rgb_d", torch.clamp(ret['rgb_map_d'], 0., 1.), global_step=i, dataformats='HWC')
writer.add_image("depth_d", normalize_depth(ret['depth_map_d']), global_step=i, dataformats='HW')
writer.add_image("acc_d", ret['acc_map_d'], global_step=i, dataformats='HW')
writer.add_image("induced_flow_f", induced_flow_f_img, global_step=i, dataformats='HWC')
writer.add_image("induced_flow_b", induced_flow_b_img, global_step=i, dataformats='HWC')
writer.add_image("flow_f_gt", flow_f_img, global_step=i, dataformats='HWC')
writer.add_image("flow_b_gt", flow_b_img, global_step=i, dataformats='HWC')
writer.add_image("dynamicness", ret['dynamicness_map'], global_step=i, dataformats='HW')
global_step += 1
if __name__ == '__main__':
torch.set_default_tensor_type('torch.cuda.FloatTensor')
train()