forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
find_triplets_with_0_sum.py
87 lines (69 loc) · 2.77 KB
/
find_triplets_with_0_sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from itertools import combinations
def find_triplets_with_0_sum(nums: list[int]) -> list[list[int]]:
"""
Given a list of integers, return elements a, b, c such that a + b + c = 0.
Args:
nums: list of integers
Returns:
list of lists of integers where sum(each_list) == 0
Examples:
>>> find_triplets_with_0_sum([-1, 0, 1, 2, -1, -4])
[[-1, -1, 2], [-1, 0, 1]]
>>> find_triplets_with_0_sum([])
[]
>>> find_triplets_with_0_sum([0, 0, 0])
[[0, 0, 0]]
>>> find_triplets_with_0_sum([1, 2, 3, 0, -1, -2, -3])
[[-3, 0, 3], [-3, 1, 2], [-2, -1, 3], [-2, 0, 2], [-1, 0, 1]]
"""
return [
list(x)
for x in sorted({abc for abc in combinations(sorted(nums), 3) if not sum(abc)})
]
def find_triplets_with_0_sum_hashing(arr: list[int]) -> list[list[int]]:
"""
Function for finding the triplets with a given sum in the array using hashing.
Given a list of integers, return elements a, b, c such that a + b + c = 0.
Args:
nums: list of integers
Returns:
list of lists of integers where sum(each_list) == 0
Examples:
>>> find_triplets_with_0_sum_hashing([-1, 0, 1, 2, -1, -4])
[[-1, 0, 1], [-1, -1, 2]]
>>> find_triplets_with_0_sum_hashing([])
[]
>>> find_triplets_with_0_sum_hashing([0, 0, 0])
[[0, 0, 0]]
>>> find_triplets_with_0_sum_hashing([1, 2, 3, 0, -1, -2, -3])
[[-1, 0, 1], [-3, 1, 2], [-2, 0, 2], [-2, -1, 3], [-3, 0, 3]]
Time complexity: O(N^2)
Auxiliary Space: O(N)
"""
target_sum = 0
# Initialize the final output array with blank.
output_arr = []
# Set the initial element as arr[i].
for index, item in enumerate(arr[:-2]):
# to store second elements that can complement the final sum.
set_initialize = set()
# current sum needed for reaching the target sum
current_sum = target_sum - item
# Traverse the subarray arr[i+1:].
for other_item in arr[index + 1 :]:
# required value for the second element
required_value = current_sum - other_item
# Verify if the desired value exists in the set.
if required_value in set_initialize:
# finding triplet elements combination.
combination_array = sorted([item, other_item, required_value])
if combination_array not in output_arr:
output_arr.append(combination_array)
# Include the current element in the set
# for subsequent complement verification.
set_initialize.add(other_item)
# Return all the triplet combinations.
return output_arr
if __name__ == "__main__":
from doctest import testmod
testmod()