Skip to content

Latest commit

 

History

History
232 lines (192 loc) · 8.87 KB

class_exercise.md

File metadata and controls

232 lines (192 loc) · 8.87 KB

Lecture 13: In-class exercises

PUT YOUR NAME HERE 11/1666666/2021

Load packages you need

library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──

## ✓ ggplot2 3.3.2     ✓ purrr   0.3.4
## ✓ tibble  3.0.3     ✓ dplyr   1.0.2
## ✓ tidyr   1.1.2     ✓ stringr 1.4.0
## ✓ readr   1.3.1     ✓ forcats 0.5.0

## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()

Read in example dataset 5 in the data subfolder and store the result in flow_data variable

Note that the first line is a comment that mentions the column names. This annoying structure is typical of datasets that you might receive from someone else. Look at the documentation of read_csv and figure out how to skip commented out lines and assign your own column names.

flow_data <- read_csv("data/example_dataset_5.csv", col_names = c("strain", "yfp", "rfp", "replicate"), comment = "#") %>% 
  print()
## Parsed with column specification:
## cols(
##   strain = col_character(),
##   yfp = col_double(),
##   rfp = col_double(),
##   replicate = col_double()
## )

## # A tibble: 74 x 4
##    strain    yfp   rfp replicate
##    <chr>   <dbl> <dbl>     <dbl>
##  1 schp677  4123 20661         1
##  2 schp678  4550 21437         1
##  3 schp675  3880 21323         1
##  4 schp676  2863 20668         1
##  5 schp687  4767 20995         1
##  6 schp688  1274 20927         1
##  7 schp679  2605 20840         1
##  8 schp680  1175 20902         1
##  9 schp681  3861 20659         1
## 10 schp683  9949 25406         1
## # … with 64 more rows

Read in example dataset 3 in the data subfolder which contains the annotations for the above table and store it in a variable annotations

annotations <- read_tsv("data/example_dataset_3.tsv") %>% 
  print()
## Parsed with column specification:
## cols(
##   strain = col_character(),
##   insert_sequence = col_character(),
##   kozak_region = col_character()
## )

## # A tibble: 17 x 3
##    strain  insert_sequence kozak_region
##    <chr>   <chr>           <chr>       
##  1 schp674 10×AAG          G           
##  2 schp675 10×AAG          B           
##  3 schp676 10×AAG          F           
##  4 schp677 10×AAG          E           
##  5 schp678 10×AAG          D           
##  6 schp679 10×AAG          A           
##  7 schp680 10×AAG          H           
##  8 schp681 10×AAG          C           
##  9 schp683 10×AGA          G           
## 10 schp684 10×AGA          B           
## 11 schp685 10×AGA          F           
## 12 schp686 10×AGA          E           
## 13 schp687 10×AGA          D           
## 14 schp688 10×AGA          A           
## 15 schp689 10×AGA          H           
## 16 schp690 10×AGA          C           
## 17 control <NA>            <NA>

Join the two tables above and assign to a new variable data

data <- inner_join(flow_data, annotations, by = "strain") %>% 
  print()
## # A tibble: 74 x 6
##    strain    yfp   rfp replicate insert_sequence kozak_region
##    <chr>   <dbl> <dbl>     <dbl> <chr>           <chr>       
##  1 schp677  4123 20661         1 10×AAG          E           
##  2 schp678  4550 21437         1 10×AAG          D           
##  3 schp675  3880 21323         1 10×AAG          B           
##  4 schp676  2863 20668         1 10×AAG          F           
##  5 schp687  4767 20995         1 10×AGA          D           
##  6 schp688  1274 20927         1 10×AGA          A           
##  7 schp679  2605 20840         1 10×AAG          A           
##  8 schp680  1175 20902         1 10×AAG          H           
##  9 schp681  3861 20659         1 10×AAG          C           
## 10 schp683  9949 25406         1 10×AGA          G           
## # … with 64 more rows

Create a new column ratio containing ratio of YFP and RFP signals for each strain replicate.

Store the result in the same data variable.

data <- data %>% 
  mutate(ratio = yfp / rfp) %>% 
  print()
## # A tibble: 74 x 7
##    strain    yfp   rfp replicate insert_sequence kozak_region  ratio
##    <chr>   <dbl> <dbl>     <dbl> <chr>           <chr>         <dbl>
##  1 schp677  4123 20661         1 10×AAG          E            0.200 
##  2 schp678  4550 21437         1 10×AAG          D            0.212 
##  3 schp675  3880 21323         1 10×AAG          B            0.182 
##  4 schp676  2863 20668         1 10×AAG          F            0.139 
##  5 schp687  4767 20995         1 10×AGA          D            0.227 
##  6 schp688  1274 20927         1 10×AGA          A            0.0609
##  7 schp679  2605 20840         1 10×AAG          A            0.125 
##  8 schp680  1175 20902         1 10×AAG          H            0.0562
##  9 schp681  3861 20659         1 10×AAG          C            0.187 
## 10 schp683  9949 25406         1 10×AGA          G            0.392 
## # … with 64 more rows

Calculate the mean and standard deviation of the YFP-RFP ratio across all replicates for each strain.

To do the above, create new summary columns mean_ratio and std_ratio after grouping all replicates.

Assign the result to avg_data variable.

avg_data <- data %>% 
  group_by(strain) %>%
  summarize(mean_ratio = mean(ratio), std_ratio = sd(ratio)) %>%
  print()
## `summarise()` ungrouping output (override with `.groups` argument)

## # A tibble: 16 x 3
##    strain  mean_ratio std_ratio
##    <chr>        <dbl>     <dbl>
##  1 schp674     0.0625  0.000640
##  2 schp675     0.181   0.00887 
##  3 schp676     0.131   0.0118  
##  4 schp677     0.193   0.00747 
##  5 schp678     0.212   0.00223 
##  6 schp679     0.128   0.0125  
##  7 schp680     0.0578  0.00256 
##  8 schp681     0.183   0.00520 
##  9 schp683     0.392   0.0246  
## 10 schp684     0.160   0.00517 
## 11 schp685     0.322   0.0124  
## 12 schp686     0.236   0.00584 
## 13 schp687     0.223   0.00523 
## 14 schp688     0.0841  0.0163  
## 15 schp689     0.381   0.0311  
## 16 schp690     0.172   0.00442

What happened to the annotations? Can you join them back with avg_data?

avg_data <- inner_join(avg_data, annotations, by = "strain") %>% 
  print()
## # A tibble: 16 x 5
##    strain  mean_ratio std_ratio insert_sequence kozak_region
##    <chr>        <dbl>     <dbl> <chr>           <chr>       
##  1 schp674     0.0625  0.000640 10×AAG          G           
##  2 schp675     0.181   0.00887  10×AAG          B           
##  3 schp676     0.131   0.0118   10×AAG          F           
##  4 schp677     0.193   0.00747  10×AAG          E           
##  5 schp678     0.212   0.00223  10×AAG          D           
##  6 schp679     0.128   0.0125   10×AAG          A           
##  7 schp680     0.0578  0.00256  10×AAG          H           
##  8 schp681     0.183   0.00520  10×AAG          C           
##  9 schp683     0.392   0.0246   10×AGA          G           
## 10 schp684     0.160   0.00517  10×AGA          B           
## 11 schp685     0.322   0.0124   10×AGA          F           
## 12 schp686     0.236   0.00584  10×AGA          E           
## 13 schp687     0.223   0.00523  10×AGA          D           
## 14 schp688     0.0841  0.0163   10×AGA          A           
## 15 schp689     0.381   0.0311   10×AGA          H           
## 16 schp690     0.172   0.00442  10×AGA          C

Plot the mean and standard deviation of the YFP-RFP ratio as a function of the Kozak region.

Display the result as a point graph and a line graph with error bars around the mean.

Give the insert_sequences different shapes and colors.

Can you make the markers twice their default size?

Can you make the error bars half as wide as their default width?

Store the result as a PDF file named demo_plot.pdf in figures subfolder.

avg_data %>% 
ggplot(aes(x = kozak_region, y = mean_ratio, color = insert_sequence, shape = insert_sequence, group = insert_sequence)) +
  geom_point(size = 2) +
  geom_line() +
  geom_errorbar(aes(ymin = mean_ratio - std_ratio, ymax = mean_ratio  + std_ratio), width = 0.5)

ggsave("figures/example_plot.pdf")
## Saving 4 x 3 in image