-
Notifications
You must be signed in to change notification settings - Fork 2
/
cancerModule.R
412 lines (351 loc) · 16.4 KB
/
cancerModule.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
#
# This is a Shiny web application. You can run the application by clicking
# the 'Run App' button above.
#
# Find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com/
#
CancerPlotUI <- function(id, label = "TCGA Expression by Cancer Type") {
ns <- NS(id)
############################ ----- UI ----- ################################################################################
# Define UI for application that draws a histogram
tagList(
fluidPage(
theme = shinythemes::shinytheme(theme = "paper"), #this is the theme Amanda chose
tabsetPanel(
tabPanel("TCGA Expression",
fluidRow(
br(),
column(6, radioButtons(ns("scaleType_t"), label = "Select Transformation:",
choices = c("TPM", "Log2(TPM + 1)"),
selected = "TPM")
)
),
fluidRow(height = 900, plotOutput(ns("tcgaPlot")))
),
tabPanel("TCGA Summary Table", # Add a new tab called "Total Genes"
br(),
div(style = "overflow-y: scroll; height: 750px;",
DT::dataTableOutput(ns("tcga_table")))
),
tabPanel("GTEx Expression",
fluidRow(
br(),
column(6, radioButtons(ns("scaleType_g"), label = "Select Transformation:",
choices = c("TPM", "Log2(TPM + 1)"),
selected = "TPM")
)
),
fluidRow(height = 900, plotOutput(ns("gtexPlot")))
),
tabPanel("GTEx Summary Table", # Add a new tab called "Total Genes"
br(),
div(style = "overflow-y: scroll; height: 750px;",
DT::dataTableOutput(ns("gtex_table")))
),
tabPanel("With GTEx", # Add a new tab called "Total Genes"
column(3,
br(),
fluidRow(height = 250, radioButtons(ns("scaleType_tg"), label = "Select Transformation:",
choices = c("TPM", "Log2(TPM + 1)"),
selected = "TPM")),
fluidRow(height = 650, checkboxGroupInput(ns("locations"), label = "Pick a Cancer Type", choices = unique(sort(tcga_manifest$Location)), selected = NULL))),
column(9,
br(),
plotOutput(ns("canGtexPlot")))
)
),
div(
style = "font-size: 24px; text-align: center;",
uiOutput(ns("message"))
)
)
)
}
############################ ----- SERVER ----- ##########################################################################
CancerPlot <- function(input, output, session, gene) {
## filtering the tcga dataset
filtData <- reactive({
if (gene() == "" | !gene() %in% tcga_newcsv$sample) {
return(NULL)
} else {
dataframe <- subset(tcga_newcsv, sample == gene())
dataframe <- dataframe %>%
pivot_longer(cols = -sample, # All columns except PRAME
names_to = "ID", # Create a new "Sample" column for the sample names
values_to = "TPM")
dataframe <- merge(dataframe, tcga_manifest, by.x = "ID", by.y = "Sample")
return(dataframe)
}
})
## filtering the gtex dataset
filtData_g <- reactive({
if (gene() == "" | !gene() %in% gtex_csv$Description) {
return(NULL)
} else {
dataframe <- subset(gtex_csv, Description == gene())
dataframe <- dataframe %>%
pivot_longer(cols = -Description, # All columns except PRAME
names_to = "ID", # Create a new "Sample" column for the sample names
values_to = "TPM")
dataframe <- merge(dataframe, gtex_manifest, by.x = "ID", by.y = "Sample")
dataframe$Tissue <- gsub("_", " ", dataframe$Tissue)
dataframe$TPM <- as.numeric(dataframe$TPM)
dataframe <- na.omit(dataframe)
return(dataframe)
}
})
## organizing the gtex/tcga combined dataset for comparison
filtData_tg <- reactive({
if (gene() == "" | !gene() %in% tcga_newcsv$sample) {
return(NULL)
} else {
dataframe_gtex <- subset(gtex_csv, Description == gene())
dataframe_gtex <- dataframe_gtex %>%
pivot_longer(cols = -Description, # All columns except PRAME
names_to = "ID", # Create a new "Sample" column for the sample names
values_to = "TPM")
dataframe_gtex$Source <- "GTEx"
dataframe_tcga <- subset(tcga_newcsv, sample == gene())
dataframe_tcga <- dataframe_tcga %>%
pivot_longer(cols = -sample, # All columns except PRAME
names_to = "ID", # Create a new "Sample" column for the sample names
values_to = "TPM")
dataframe_tcga$Source <- "TCGA"
dataframe_gtex <- merge(dataframe_gtex, gtex_manifest, by.x = "ID", by.y = "Sample")
dataframe_tcga <- merge(dataframe_tcga, tcga_manifest, by.x = "ID", by.y = "Sample")
dataframe_gtex <- dataframe_gtex[,-6]
dataframe_tcga <- dataframe_tcga[,-6]
colnames(dataframe_gtex)[2] <- "Sample"
colnames(dataframe_tcga)[2] <- "Sample"
colnames(dataframe_gtex)[5] <- "Cancer_or_Tissue"
colnames(dataframe_tcga)[5] <- "Cancer_or_Tissue"
dataframe_gtex$Cancer_or_Tissue <- paste0("GTEx ", dataframe_gtex$Cancer_or_Tissue)
dataframe_tcga$Cancer_or_Tissue <- paste0("TCGA ", dataframe_tcga$Cancer_or_Tissue)
dataframe_gtex$Cancer_or_Tissue <- gsub("_", " ", dataframe_gtex$Cancer_or_Tissue)
dataframe <- rbind(dataframe_gtex, dataframe_tcga)
if (length(input$locations) > 0) {
filtered <- dataframe %>% filter(Location %in% input$locations)
return(filtered)
} else {
return(NULL)
}
}
})
output$tcgaPlot <- renderPlot({
if (is.null(filtData())) {
return(NULL)
} else {
if (input$scaleType_t == "TPM") {
p <- ggplot(filtData(), aes(x = Cancer, y = as.numeric(TPM), color = Cancer, fill = Cancer)) +
geom_jitter(size = 0.75, height = 0) +
scale_y_continuous(labels = scales::number_format()) +
theme_classic(base_size = 16) +
theme(
legend.position = "none",
axis.text.x = element_text(angle = 45, hjust = 1),
plot.title = element_text(hjust = 0.5),
panel.grid.major = element_line(color = "lightgray", linewidth = 0.5, linetype = 1),
plot.margin = margin(t = 10, r = 30, b = 0, l = 40)) +
ggtitle(paste(gene(), "Expression Per Cancer Type")) +
xlab("") +
ylab("TPM") +
stat_summary(fun.y=median, geom="crossbar", size=0.5, width=0.8, color="black")
} else{
p <- ggplot(filtData(), aes(x = Cancer, y = log2(as.numeric(TPM)+1), color = Cancer, fill = Cancer)) +
geom_jitter(size = 0.75, height = 0) +
scale_y_continuous(labels = scales::number_format()) +
theme_classic(base_size = 16) +
theme(
legend.position = "none",
axis.text.x = element_text(angle = 45, hjust = 1),
plot.title = element_text(hjust = 0.5),
panel.grid.major = element_line(color = "lightgray", linewidth = 0.5, linetype = 1),
plot.margin = margin(t = 10, r = 30, b = 0, l = 40)) +
ggtitle(paste(gene(), "Expression Per Cancer Type")) +
xlab("") +
ylab("Log2(TPM + 1)") +
stat_summary(fun.y=median, geom="crossbar", size=0.5, width=0.8, color="black")
}
print(p)
}
}, height = 750)
output$gtexPlot <- renderPlot({
if (is.null(filtData_g())) {
return(NULL)
} else {
if (input$scaleType_g == "TPM") {
p <- ggplot(filtData_g(), aes(x = Tissue, y = as.numeric(TPM), color = Tissue, fill = Tissue)) +
geom_jitter(size = 0.75, height = 0) +
scale_y_continuous(labels = scales::number_format()) +
theme_classic(base_size = 16) +
theme(
legend.position = "none",
axis.text.x = element_text(angle = 45, hjust = 1),
plot.title = element_text(hjust = 0.5),
panel.grid.major = element_line(color = "lightgray", linewidth = 0.5, linetype = 1),
plot.margin = margin(t = 10, r = 30, b = 0, l = 40)) +
ggtitle(paste(gene(), "Expression Per Tissue Type")) +
xlab("") +
ylab("TPM") +
stat_summary(fun.y=median, geom="crossbar", size=0.5, width=0.8, color="black")
} else{
p <- ggplot(filtData_g(), aes(x = Tissue, y = log2(as.numeric(TPM)+1), color = Tissue, fill = Tissue)) +
geom_jitter(size = 0.75, height = 0) +
scale_y_continuous(labels = scales::number_format()) +
theme_classic(base_size = 16) +
theme(
legend.position = "none",
axis.text.x = element_text(angle = 45, hjust = 1),
plot.title = element_text(hjust = 0.5),
panel.grid.major = element_line(color = "lightgray", linewidth = 0.5, linetype = 1),
plot.margin = margin(t = 10, r = 30, b = 0, l = 40)) +
ggtitle(paste(gene(), "Expression Per Tissue Type")) +
xlab("") +
ylab("Log2(TPM + 1)") +
stat_summary(fun.y=median, geom="crossbar", size=0.5, width=0.8, color="black")
}
print(p)
}
}, height = 750)
output$canGtexPlot <- renderPlot({
if (is.null(filtData_tg())) {
return(NULL) # Return nothing if filtered data is NULL
}else{
if (input$scaleType_tg == "TPM") {
print(filtData_tg())
p <- ggplot(filtData_tg(), aes(x = reorder(Cancer_or_Tissue, -startsWith(Cancer_or_Tissue, "TCGA")), y = as.numeric(TPM), color = Source)) +
geom_jitter(size = 0.75) +
facet_grid(. ~ Location, scales = "free_x", space = "free_x") +
scale_colour_manual(values = c("TCGA" = "#FF4242","GTEx" = "#47abd8")) +
scale_y_continuous(labels = scales::number_format()) + # This line changes the y-axis formatting
theme_bw(base_size = 16) +
theme(
legend.position = "right",
axis.text.x = element_text(angle = 45, hjust = 1),
plot.title = element_text(hjust = 0.5),
panel.grid.major = element_line(color = "lightgray", linewidth = 0.5, linetype = 1),
strip.background=element_rect(colour="black", fill="#3c8dbd"),
strip.text = element_text(face = "bold")
) +
ggtitle(paste(gene(), "Expression in TCGA Cancer and GTEx Normal Tissue")) +
xlab("Location") +
ylab("TPM") +
stat_summary(fun.y=median, geom="crossbar", size=0.5, width=0.8, color="black") +
guides(color = guide_legend(override.aes = list(size = 3)))
}else{
p <- ggplot(filtData_tg(), aes(x = reorder(Cancer_or_Tissue, -startsWith(Cancer_or_Tissue, "TCGA")), y = log2(as.numeric(TPM)+1), color = Source)) +
geom_jitter(size = 0.75) +
facet_grid(. ~ Location, scales = "free_x", space = "free_x") +
scale_colour_manual(values = c("TCGA" = "#FF4242","GTEx" = "#47abd8")) +
scale_y_continuous(labels = scales::number_format()) + # This line changes the y-axis formatting
theme_bw(base_size = 16) +
theme(
legend.position = "right",
axis.text.x = element_text(angle = 45, hjust = 1),
plot.title = element_text(hjust = 0.5),
panel.grid.major = element_line(color = "lightgray", linewidth = 0.5, linetype = 1),
strip.background=element_rect(colour="black", fill="#3c8dbd"),
strip.text = element_text(face = "bold")
) +
ggtitle(paste(gene(), "Expression in TCGA Cancer and GTEx Normal Tissue")) +
xlab("Location") +
ylab("Log2(TPM+1)") +
stat_summary(fun.y=median, geom="crossbar", size=0.5, width=0.8, color="black") +
guides(color = guide_legend(override.aes = list(size = 3)))
}
print(p)
}
}, height = 750)
output$message <- renderUI({
data <- filtData()
if (gene() == "") {
return("Type a gene into the text box to the upper left.")
} else if (!gene() %in% data$sample) {
return("This gene is not in the dataset.")
} else {
return(NULL)
}
})
### This is the table for showing the data by cancer
output$tcga_table <- DT::renderDataTable({
if (gene() == "") {
return(NULL)
}
else{
data <- filtData()
colnames(data)[2] <- "Sample"
data <- data %>%
group_by(Cancer) %>%
summarize(
N = n(), # Count of samples for each cancer type
`Median TPM` = round(median(TPM, na.rm = TRUE), 2), # Median TPM expression
`Mean TPM` = round(mean(TPM, na.rm = TRUE), 2), # Mean TPM expression
`Min TPM` = round(min(TPM, na.rm = TRUE), 2),
`Max TPM` = round(max(TPM, na.rm = TRUE), 2),
`Range TPM` = round(as.numeric(max(TPM, na.rm = TRUE) - min(TPM, na.rm = TRUE)), 2)
) %>%
ungroup()
DT::datatable(data,
class = "compact nowrap hover row-border order-column",
extensions = 'Buttons', # Defines the CSS formatting of the final table
options = list(
dom = 'Bfrtip', # 'f' for filter/search, 'r' for processing info, 't' for table
scrollY = TRUE,
searchHighlight = TRUE,
pageLength = 100,
buttons = c('csv', 'excel')),
escape = FALSE) %>%
DT::formatStyle(columns = c(1, 2, 3, 4, 5, 6, 7), fontSize = "100%") %>% # Apply formatting to all columns
DT::formatStyle(
columns = 3, # Specify the columns to style
background = styleColorBar(range(data[, 3], na.rm = TRUE), "#b0d2e6"), # Corrected this line
backgroundSize = '90% 88%',
backgroundRepeat = 'no-repeat',
backgroundPosition = 'right')
}
})
### This is the table for showing the data by tissue
output$gtex_table <- DT::renderDataTable({
if (gene() == "") {
return(NULL)
}
else{
data <- filtData_g()
colnames(data)[2] <- "Sample"
data <- data %>%
group_by(Tissue) %>%
summarize(
N = n(), # Count of samples for each cancer type
`Median TPM` = round(median(TPM, na.rm = TRUE), 2), # Median TPM expression
`Mean TPM` = round(mean(TPM, na.rm = TRUE), 2), # Mean TPM expression
`Min TPM` = round(min(TPM, na.rm = TRUE), 2),
`Max TPM` = round(max(TPM, na.rm = TRUE), 2),
`Range TPM` = round(as.numeric(max(TPM, na.rm = TRUE) - min(TPM, na.rm = TRUE)), 2)
) %>%
ungroup()
DT::datatable(data,
class = "compact nowrap hover row-border order-column",
extensions = 'Buttons',# Defines the CSS formatting of the final table
options = list(
dom = 'Bfrtip', # 'f' for filter/search, 'r' for processing info, 't' for table
scrollY = TRUE,
searchHighlight = TRUE,
pageLength = 100,
buttons = c('csv', 'excel')),
escape = FALSE) %>%
DT::formatStyle(columns = c(1, 2, 3, 4, 5, 6, 7), fontSize = "100%") %>% # Apply formatting to all columns
DT::formatStyle(
columns = 3, # Specify the columns to style
background = styleColorBar(range(data[, 3], na.rm = TRUE), "#b0d2e6"), # Corrected this line
backgroundSize = '90% 88%',
backgroundRepeat = 'no-repeat',
backgroundPosition = 'right')
}
})
}
############################ ----- RUN ----- ###############################################################################
#Run the application
#shinyApp(ui = ui, server = server)
############################################################################################################################