-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_dess_pseudo_replications.py
78 lines (58 loc) · 2.54 KB
/
run_dess_pseudo_replications.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import matplotlib.pyplot as plt
import numpy as np
import os
import nibabel as nib
import h5py
# TODO: Include voxel size
def save(img, filename):
M = [[0,0,-0.65,0],
[-0.5,0,0,0],
[0,-0.5,0,0],
[0,0,0,1]]
img = nib.Nifti1Image(np.transpose(img, list(range(len(img.shape)-1,-1,-1))), np.array(M))
nib.save(img, filename)
n_runs = 10
for P in [1,2,3,4,5]:
print(P)
filename = f'./data/P{P}.h5'
dirName = f'./results/dess_P{P}/'
os.makedirs(dirName, exist_ok=True)
#%%
with h5py.File(filename, 'r') as f:
img_orig = np.array(f['dess'])
mask = np.array(f['normalization_mask'])
te_ref = f['mess'].attrs['echoTimes']
te = f['dess'].attrs['echoTimes']
tr = f['dess'].attrs['repetitionTime']
bw = f['dess'].attrs['readoutBandwidth']
fa = f['dess'].attrs['flipAngle']
# 16.4% reduction in bandwidth by adding 1.56ms (difference between DESS spoiler and MESS spoiler duration)
# split over the two DESS readouts
bw = 1/(1/bw + 1.56e-3/2)
bw_mess = f['mess'].attrs['readoutBandwidth']
dte = (te[0] - (tr+te[1]))
# Calculate T2
t1 = 1.2 # Cartilage
t2_scale_w = np.sin(fa/180 * np.pi/2)**2 * (1 + np.exp(-tr/t1))/(1-np.cos(fa/180 * np.pi) * np.exp(-tr/t1))
r2 = -np.log(abs(img_orig[0]/(img_orig[1]/t2_scale_w + 1e-12))) / dte
# Difference in intensity of the muscle region at TE_mess[0] and TE_dess[0] due to T2
te_diff_factor = np.exp(r2[mask].mean() * (te[0] - te_ref[0]))
# Normalize muscle tissue to 0.5 intensity at TE_mess[0]
scale = abs(img_orig[0,mask] * te_diff_factor).mean()*2
img_orig /= scale
#%% Loop over pseudo-replications
for run in range(n_runs+1):
print(run)
img = img_orig.copy()
if run > 0:
# Add noise, SNR 40 * np.sqrt(bw_mess/bw_dess) at muscle (intensity 0.5)
img += (np.random.randn(*img.shape) + 1j*np.random.randn(*img.shape))*(1/(80 * np.sqrt(bw_mess/bw)))
# Scale image to intensity of TE_mess[0]
img *= te_diff_factor
# Calculate T2
r2 = -np.log(abs(img[0]/(img[1]/t2_scale_w + 1e-12))) / dte
# Save images to nifti
save(img[0], dirName + f'w_run{run}.nii.gz')
save(img[1], dirName + f'w2_run{run}.nii.gz')
save(r2, dirName + f'r2_run{run}.nii.gz')
plt.imsave(dirName + f'w_run{run}.png', abs(img[0,126]),cmap=plt.get_cmap('gray'),vmin=0,vmax=0.75)