-
Notifications
You must be signed in to change notification settings - Fork 0
/
project_status.py
executable file
·322 lines (269 loc) · 13.9 KB
/
project_status.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import sys, os, glob
import argparse
from operator import itemgetter
import glob
def init_sample_hash_emtry():
empty_sample_result = {
'#Archived_runs' : 0,
'#Data_runs': 0,
'#Analysis_runs': 0,
'#Reads':0,
'RowCov':0,
'#AlignedReads':0,
'%AlignedReads':0,
'AlignCov':0,
'%Dup':0,
'MedianInsertSize':0,
'GCpercentage':0,
'Delivered':False
}
return empty_sample_result
def find_samples_from_archive(roots, project, samples, stockholm):
"""given a project (e.g. P1775 or OB-0726) finds all samples sequenced for that specif project
it assumes that we never delete the folder stucture, but only fastq files
returns an hash with one sample name as key and number of seq runs that contain that sample
"""
for root in roots:
for dir in os.listdir(root):
if "_ST-" in dir:
#must be an X FC
run_dir = os.path.join(root, dir)
sample_dirs = glob.glob("{}/Demultiplexing/*/Sample_*".format(run_dir))
for sample in sample_dirs:
if stockholm:
sample_name = sample.split("/")[-1].replace("Sample_", "")
if not sample_name.startswith(project):
continue
else:#uppsala case
current_project = sample.split("/")[-2]
if project != current_project:
continue
sample_name = sample.split("/")[-1].replace("Sample_", "")
if not sample_name in samples:
samples[sample_name] = init_sample_hash_emtry()
archived_runs = len(glob.glob("{}/{}*L0*R1*fastq.gz".format(sample,sample_name)))
if archived_runs == 0: #stockholm case
sampe_name_hyphen = sample_name.replace("_", "-")
archived_runs = len(glob.glob("{}/{}*L00*R1*fastq.gz".format(sample,sampe_name_hyphen)))
samples[sample_name]["#Archived_runs"] += archived_runs
def find_sample_from_DATA(root, project, samples ):
"""given a project (e.g. P1775) finds all samples tranfered to DATA folder
returns an hash with one sample name as key and number of seq runs (or lanes runs)
"""
if not os.path.exists(os.path.join(root,project)):
return samples
for sample in os.listdir(os.path.join(root,project)):
#DATA/SAMPLE/LIB_PREPS/RUNS
if sample.startswith("."):
continue
sample_data_dir = os.path.join(root, project, sample)
sample_runs = glob.glob("{}/*/*/{}*L0*_R1*fastq.gz".format(sample_data_dir,sample)) #if sample splitted in multiple lanes there will be an entry per lane
if not sample in samples:
samples[sample] = init_sample_hash_emtry()
samples[sample]['#Data_runs'] = len(sample_runs)
def find_sample_from_ANALYSIS(root, project, samples):
"""given a project (e.g. P1775) finds all samples in ANALYSIS folder
returns an hash with one sample name as key and various stats on the sample
It does this by looking at the bam.out files that is present in the 01_raw_alignments folder
A sample is counted here if it is found in 01_raw_alignments
"""
raw_alignments_dir = os.path.join(root, project, "piper_ngi", "01_raw_alignments")
for sample_run in glob.glob("{}/*.out".format(raw_alignments_dir)):
sample_run_algn = sample_run.split("/")[-1] # this looks like P1775_102.AH2T7GCCXX.P1775_102.1.bam.out
sample_name = sample_run_algn.split(".")[0]
sample_lane = int(sample_run_algn.split(".")[3])
if not sample_name in samples:
samples[sample_name] = init_sample_hash_emtry()
samples[sample_name]['#Analysis_runs'] += 1
# now check if I can retrive other informaiton about this sample
for sample, sample_entry in samples.items():
genome_results_file = os.path.join(root, project, "piper_ngi", "06_final_alignment_qc",
"{}.clean.dedup.qc".format(sample),
"genome_results.txt")
if os.path.isfile(genome_results_file) and sample_entry['#Analysis_runs'] == 0:
sample_entry['#Analysis_runs'] = 1 # at least one is present
if sample_entry['#Analysis_runs'] > 0:
#if i have run some analysis on this sample fetch info about sequenced reads and coverage
picard_duplication_metrics = os.path.join(root, project, "piper_ngi", "05_processed_alignments",
"{}.metrics".format(sample))
if os.path.isfile(genome_results_file):
#store informations
parse_qualimap(genome_results_file, sample_entry)
if os.path.isfile(picard_duplication_metrics) and sample_entry['#Reads'] > 0:
# if picard file exists and bamqc has been parsed with success
parse_bamtools_markdup(picard_duplication_metrics, sample_entry)
def find_sample_from_DELIVERY(root, project, samples):
"""given a project (e.g. P1775) finds all samples in DELIVERED folder
returns an hash with one sample name as key the key delivered set as true or false
"""
project_delivery_dir = os.path.join(root,project)
if not os.path.exists(project_delivery_dir):
return None
for sample in os.listdir(project_delivery_dir):
if os.path.isdir(os.path.join(project_delivery_dir, sample)) and sample != "00-Reports":
if not sample in samples:
samples[sample] = init_sample_hash_emtry()
samples[sample]['Delivered'] = True
def parse_bamtools_markdup(picard_duplication_metrics, sample):
duplication = 0
with open(picard_duplication_metrics, 'r') as f:
for line in f:
line.strip()
if line.startswith("## METRICS CLASS"):
line = f.next() # this is the header
line = f.next().strip() # thisis the one I am intrested
duplicate_stats= line.split()
UNPAIRED_READ_DUPLICATES = int(duplicate_stats[4])
READ_PAIR_DUPLICATES = int(duplicate_stats[5])
PERCENT_DUPLICATION = float(duplicate_stats[7].replace(",", "."))# some times a comma is used
sample['%Dup'] = PERCENT_DUPLICATION
def parse_qualimap(genome_results_file, sample):
reference_size = 0
number_of_reads = 0
number_of_mapped_reads = 0
coverage_mapped = 0
coverage_raw = 0
GCpercentage = 0
MedianInsertSize = 0
autosomal_cov_length = 0
autosomal_cov_bases = 0
reference_section = False
global_section = False
coverage_section = False
coverage_section = False
coverage_per_contig_section = False
insertSize_section= False
with open(genome_results_file, 'r') as f:
for line in f:
if line.startswith('>>>>>>> Reference'):
reference_section = True
continue
if line.startswith('>>>>>>> Globals'):
reference_section = False
global_section = True
continue
if line.startswith('>>>>>>> Insert'):
global_section = False
insertSize_section= True
continue
if line.startswith('>>>>>>> Coverage per contig'):
coverage_section = False
coverage_per_contig_section = True
continue
if line.startswith('>>>>>>> Coverage'):
coverage_section = True
insertSize_section = False
continue
if reference_section:
line = line.strip()
if "number of bases" in line:
reference_size = int(line.split()[4].replace(",", ""))
reference_section = False
if global_section:
line = line.strip()
if "number of reads" in line:
number_of_reads = int(line.split()[4].replace(",", ""))
if "number of mapped reads" in line:
number_of_mapped_reads = int(line.split()[5].replace(",", ""))
if insertSize_section:
line = line.strip()
if "median insert size" in line:
MedianInsertSize = int(line.split()[4])
if coverage_section:
line = line.strip()
if "mean coverageData" in line:
coverage_mapped = float(line.split()[3].replace("X", ""))
if coverage_per_contig_section:
line = line.strip()
if line:
sections = line.split()
if sections[0].isdigit() and int(sections[0]) <= 22:
autosomal_cov_length += float(sections[1])
autosomal_cov_bases += float(sections[2])
sample['#Reads'] = number_of_reads
sample['RowCov'] = (number_of_reads*150)/float(reference_size)
sample['#AlignedReads'] = number_of_mapped_reads
sample['%AlignedReads'] = (float(number_of_mapped_reads)/number_of_reads)*100
sample['AlignCov'] = coverage_mapped
sample['MedianInsertSize'] = MedianInsertSize
sample['AutosomalCoverage'] = autosomal_cov_bases / autosomal_cov_length
def main(args):
uppmax_id = args.uppmax_project
stockholm = args.stockholm
raw_data = "/proj/{}/nobackup/NGI/DATA/".format(uppmax_id)
analysis_dir = "/proj/{}/nobackup/NGI/ANALYSIS/".format(uppmax_id)
delivery_dir = "/proj/{}/nobackup/NGI/DELIVERY/".format(uppmax_id)
archive = ("/proj/{}/archive/".format(uppmax_id), "/proj/{}/incoming/".format(uppmax_id))
samples = {}
projects = [item for sublist in args.projects for item in sublist]
if args.project_status:
if len(args.projects[0]) != 1:
print "WARNING: only one project when project-status specified\n"
return
for project in args.projects[0]:
#find all samples sequenced for a project present in archive -- this assumes that fastq files will be deleted but not the folder structure
find_samples_from_archive(archive, project, samples, stockholm)
#now find samples that are stored in DATA
find_sample_from_DATA(raw_data, project, samples)
find_sample_from_ANALYSIS(analysis_dir, project, samples)
find_sample_from_DELIVERY(delivery_dir, project, samples)
if args.project_status:
sequenced_samples = 0
delivered_samples = 0
print "SAMPLE\tARCHIVE_SEQ_RUN\tDATA_SEQ_RUN\tANALYSIS_SEQ_RUN"
for sample, sample_entry in samples.items():
sequenced_samples +=1
if sample_entry['Delivered']:
delivered_samples += 1
print "{}\t{}\t{}\t{}".format(
sample,
sample_entry['#Archived_runs'],
sample_entry['#Data_runs'],
sample_entry['#Analysis_runs']
)
print "PROJECT SUMMARY:"
print " SAMPLES_SEQUENCED: {}".format(sequenced_samples)
print " SAMPLES_DELIVERED: {}".format(delivered_samples)
else:
for sample, sample_entry in samples.items():
skip_print = 0;
if sample_entry['#Archived_runs'] != sample_entry['#Data_runs']:
skip_print = 0
if sample_entry['#Archived_runs'] != sample_entry['#Analysis_runs']:
skip_print = 0
if sample_entry['#Analysis_runs'] == 0:
skip_print = 1 # no problem here as might have demux runs
if skip_print == 1:
print "WARNING: Sample {} has incoherent numbers of runs: ({} {} {})".format(sample,
sample_entry['#Archived_runs'],
sample_entry['#Data_runs'],
sample_entry['#Analysis_runs']
)
samples[sample]["skip print"] = skip_print
if not args.skip_header:
print "sample_name\t#Reads\tRaw_coverage\t#Aligned_reads\t%Aligned_reads\tAlign_cov\tAutosomalCoverage\t%Dup\tMedianInsertSize"
for sample, sample_entry in samples.items():
if sample_entry["skip print"] == 0:
print "{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}".format(
sample,
sample_entry['#Reads'],
sample_entry['RowCov'],
sample_entry['#AlignedReads'],
sample_entry['%AlignedReads'],
sample_entry['AlignCov'],
sample_entry['AutosomalCoverage'],
sample_entry['%Dup'],
sample_entry['MedianInsertSize']
)
if __name__ == '__main__':
parser = argparse.ArgumentParser("""Process one or more project and report basic statistiscs for it """)
parser.add_argument('--projects', help="Projects we want to have statistics for, in stockholm case P1000, uppsala NK-0191", type=str, action='append', nargs='+')
parser.add_argument('--uppmax-project', help="uppmax project where analysis have been run", type=str, required=True)
parser.add_argument('--project-status', help="reports number of samples, of samples-runs, analysed samples and delivered samples (work only if a single project is specified)", action='store_true')
parser.add_argument('--skip-header', help="skip header", action='store_true')
parser.add_argument('--stockholm', help="assume stocholm project format, otherwise uppsala", action='store_true', default=True)
args = parser.parse_args()
if not args.projects:
print "ERROR: projects must be specified"
sys.exit()
main(args)