sequence-and-recurrence
Folders and files
Name | Name | Last commit date | ||
---|---|---|---|---|
parent directory.. | ||||
\documentclass{article} \usepackage{mathbbol} \usepackage{graphicx} \graphicspath{ {./images/} } \renewcommand{\arraystretch}{2.5} \newcommand{\definition}[1]{\paragraph*{\underline{Definition}: #1}} \newcommand{\property}[1]{\paragraph*{\underline{Property}: #1}} \newcommand{\theorem}[1]{\paragraph*{\underline{Theorem}: #1}} \title{Sequence and recurrence} \author{Flydexo} \begin{document} \maketitle \tableofcontents \section{Reasoning by recurrence} \theorem{} $P(n)$ a property, we suppose that: \begin{itemize} \item $P(0)$ is true \item if $P(n)$ is true so $P(n+1)$ is true \end{itemize} So for every $n$, $P(n)$ is true \theorem{Reasoning by recurrence from a certain rank} $n_0 \in \mathbb{N}$, $n \ge n_0$, we suppose that: \begin{itemize} \item $P(n_0)$ is true \item if $n \ge n_0$, $P(n)$ is true so $P(n+1)$ is true \end{itemize} So for every $n \ge n_0$, $P(n)$ is true \paragraph{\underline{Steps to demonstrate by recurrence with $n \ge n_0$}} \begin{enumerate} \item Initialization, verification of the truth of the property for $n=n_0$ \item Heredity, we suppose $P(n)$ is true, demonstrate that $P(n+1)$ is true \item Conclusion, we conclude that $P(n)$ is true for all $n \ge n_0$ \end{enumerate} \property{Inequality of Bernoulli} $$a \in \mathbb{R}^*, n \in \mathbb{N}, (1+a)^n \ge 1+na$$ \section{Limit of a sequence} \definition{Sequence diverging to infinity} $(u_n)$ tends to $+\infty$ when $n$ tends to $+\infty$, if for every real: $A>0$ the interval $]A;+\infty[$ includes all the terms of the sequence from a certain rank. We say that $(u_n)$ diverges $$\lim_{n \to +\infty} u_n = +\infty$$ $(u_n)$ tends to $-\infty$ when $n$ tends to $+\infty$, if for every real $A > 0$ the interval $]-\infty;-A[$ includes all the terms of the sequence from a certain rank. $(u_n)$ diverges. $$\lim_{n \to +\infty} u_n = -\infty$$ \definition{Sequence converging a real number} $(u_n)$ tends to the real $l$ when $n$ tends to $+\infty$ if all the opened interval including $l$ includes all the terms of the sequence from a certain rank. $(u_n)$ converges $$\lim_{n \to +\infty} u_n = l$$ \theorem{Unicity of the limit} If a limit exists, it is unique. \section{Property of limits} \property{Limits of the reference sequences} $\sqrt{n}, n$ and $n^k$ where $k \in \mathbb{R}^*$ have $$\lim_{n \to +\infty} = +\infty$$ $\frac{1}{\sqrt{n}}, \frac{1}{n}, \frac{1}{n^k}$ have $$\lim_{n \to +\infty} = 0$$ \property{Sum and products of limits} \begin{center} \includegraphics[scale=0.35]{sum_product_table.png} \end{center} \property{Quotient of limits} \begin{center} \includegraphics[scale=0.35]{quotient_table.png} \end{center} \section{Limit and comparison} \theorem{Theorem of comparison} $(u_n)$ and $(v_n)$, $n \ge n_0$, $u_n \le v_n$ \begin{itemize} \item If $\lim_{n \to +\infty} u_n = +\infty$ then $\lim_{n \to +\infty} v_n = +\infty$ \item If $\lim_{n \to +\infty} v_n = -\infty$ then $\lim_{n \to +\infty} u_n = -\infty$ \end{itemize} \theorem{Theorem of gendarmes} $(u_n), (v_n), (w_n), l$ a real. We suppose that: \begin{itemize} \item $n_0$ exists, such as, $n \ge n_0, v_n \le u_n \le w_n$ \item $\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} w_n = l$ \end{itemize} So the sequence $(u_n)$ converges and $\lim_{n \to +\infty} u_n = l$ \property{Inequalities and limits} Let $(u_n)$ and $(v_n)$ two sequences converging. We suppose $n_0$, such as $n \ge n_0$, $u_n \le v_n$. So $\lim_{n \to +\infty} u_n \le \lim_{n \to +\infty} v_n$ \section{Geometrical sequences and monotone sequences} \property{Limit of a geometrical sequence} Let $q$ a real. \begin{itemize} \item If $q > 1$, so $\lim_{n \to +\infty} q^n = +\infty$ \item If $q = 1$, so $\lim_{n \to +\infty} q^n = 1$ \item If $-1 < q < 1$, so $\lim_{n \to +\infty} q^n = 0$ \item If $q \le -1$, so the sequence $(q^n)$ has no limit \end{itemize} \definition{Increased, understated, bounded sequence} Let $(u_n)$ be a sequence defined from rank $k$. \begin{itemize} \item We say that $(u_n)$ is increased if a real M exists such as for every integer, $n \ge k, u_n \le M$ \item We say that $(u_n)$ is understated if a real m exists such as for every integer, $n \ge k, u_n \ge m$ \item We say that $(u_n)$ is bounded if $(u_n)$ is understated and increased. \end{itemize} \property{Convergence of a monotone sequence} \begin{enumerate} \item Every increasing increased sequence converges \item Every increasing non-increased sequence diverges to $+\infty$ \item Every decreasing understated sequence converges \item Every decreasing non-understated sequence diverges to $-\infty$ \end{enumerate} \end{document}