Warm up: Exponential Functions
a) $3^n \times 9 = 3^{n+2}$
b) $\frac{\normalsize x\times 4}{\normalsize (2x)^2} = \frac{\normalsize x\times 2^2}{\normalsize x^2 \times 2^2} = \frac{\normalsize x}{\normalsize x^2} = x^{-1}$
c) $\frac{\normalsize 3^4 \times 3}{\normalsize 3^{-2}} = 3^7$
d) $(a^2)^4 \times a^{-3} = a^5$
a)
$$2x+4 > 0$$
$$2x > -4$$
$$x > -2$$
b)
$$x^2 - 1 < 0$$
$$x^2 < 1$$
$$x < 1$$
c)
$$-3x + 4 \le 0$$
$$-3w \le -4$$
$$x \le \frac{4}{3}$$
d)
$$x+4 > 3x + 1$$
$$2x > -3$$
$$x > \frac{-3}{2}$$
e)
$$x^2 - 4 < - 5$$
$$x^2 > - 1$$
$$x > \emptyset$$
f)
$$-7x+1 > -3(x+1)$$
$$-7x+1 > -3x+3$$
$$-4x > -4$$
$$x > 1$$
a) $3x-x^3 = x(3-x^2)$
b) $9-x^2 = (3-x)^2$
c) $5(x+1) + x^2(-x-1) = 5x+5 - x^3 - x^2 = 5x+5 = 5(x+1)$
d) $4x^2 - 4x + 1 = 4x(x-1+\frac{1}{4x})$
Derivate of $f(x) = x^2 - 2x + 3$ is $f'(x) = 2x-2$
$f'(2) = 2$
$y=2(x-2)+3$
$f'(1) = 0$
$y = 2$
6. Work with geometrical sequences
$u_n = 3 \times 2^n$ is geometrical because it's initial term is $3$ and it's common ratio is $3$
$(u_n)$ $q=\frac{1}{4}$ $u_0 = 2$
$$u_{n+1} = \frac{n}{4}$$
$$S = \sum_{k=0}^{k=10} u_k$$
$$S = u_0 + u_1 + ... + u_{10}$$
$$S = \frac{2}{1} + \frac{2}{4} + \frac{2}{16} + \frac{2}{64} + ... + \frac{2}{4^{10}}$$
$$S = 2 \times 4^0 + 2 \times 4^{-1} + 2 \times 4^{-2} + ... + 2 \times 4^{-10}$$
$$S = 2 \times (4^0 + 4^{-1} + 4^{-2} + ... + 4^{-10})$$
$$S = 2 \times 1.3333330154 = 2.6666660308$$
7. Evolution and geometrical sequence
a) $q = \frac{1}{3}$
b) $q = 1.10$
c) $q = 0.87$
d) $q = \frac{1}{4}$