Skip to content

Latest commit

 

History

History
338 lines (239 loc) · 7.92 KB

exercises.md

File metadata and controls

338 lines (239 loc) · 7.92 KB

Exercises: Digital Sequence

TODO

Corrected exercises

  • Page 56
  • Page 57
  • Page 58
  • Page 59
  • Page 60
  • Page 61
  • Page 62
  • Page 63

Application exercises

  • 34-36 page 64
  • 40-42 page 64
  • 50-54 page 65
  • 61-63 page 66
  • 70-72 page 66
  • 77-79 page 67
  • 83-85 page 67

Training exercises

  • 88-90 page 68
  • 105-107 page 69
  • 116-118 page 70
  • 128-129 page 71

Deepening exercises

  • 135, 137, 139 page 73
  • 143,144 page 74
  • 147,148,149,150 page 75

Practical work

  • 1 page 76
  • 160-162 page 78
  • 178-180 page 79

Exercises

Page 56

1. Calculate terms defined by an explicit formula

  1. Calculate 3 first terms of the sequence $(u_n)$ defined $\forall n \in \mathbb{N}$ by $u_n = 2n +1$

1, 3, 5


1

  1. Calculate first 4 terms of $(u_n)$ $u_n = n^3$

    0, 1, 3, 8

  2. 10 first terms

    0, 1, 3, 8, 27, 64, 125, 216, 343, 512

2

Let $(u_b)$ a sequence, defined $u_n = -n + 5$

  1. Calculate $u_0$ and $u_1$

    $u_0 = 5$, $u_1=4$


2 Relation of recurrence

  1. 3 first terms, $(u_n)$, defined by $u_0=1$ and $u_{n+1}=2u_n+1$

    1, 3, 7

  2. 3 firsts terms, $(v_n)$, defined by $v_0=2$ and $v_{n+1}=v_n+n+3$

    2, 5, 9


3

  1. 3 first terms, $(u_n)$, $u_0=2$, $u_{n+1}=u_n^2$

    2, 4, 16

4

Let $(w_n)$, $w_0=-1$, $w_{n+1}=-w_n+n$

  1. $w_1, w_2$

    -1, 0


3 Model with Sequence

Sport club has 500 subs in 2019. Each year 80% stay subscribed and new 20 people subscribe. $(u_n)$ is the number of subs in $2019 + n$.

  1. Subs in 2020 $$u_{n+1}=u_n\times\frac{4}{5}+20$$ $$u_{2O20}=500\times\frac{4}{5}+20$$ $$u_{2O20}=420$$
  2. Express $u_{n+1}$ based on ${u_n} $$u_{n+1}=u_n\times\frac{4}{5}+20$$
  3. How many subs in 2030 (with calculator)

    134

  4. When the gym hits 101 subs it will close, will it happen and when ?

    Yes, in 2046


5

A company has 200 employees in 2019, each year 10% leave and 30 join. $(u_n)$ is the number of employees in $2019 + n$.

  1. How many employees in 2020, 2021 ? $$u_{n+1}=u_n\times\frac{9}{10}+30$$ $$u_{2020}=200\times\frac{9}{10}+30$$ $$u_{2020}=210$$ $$u_{2021}=210\times\frac{9}{10}+30$$ $$u_{2021}=219$$
  2. Express based on $n$ $$u_{n+1}=u_n\times\frac{9}{10}+30$$

6

In a shop a sweater costs 60$, each period of sale the price decreases by 15%.

  1. Price after first period of sale $$u_{n+1}=u_n\times \frac{85}{100}$$ $$u_1=60\times \frac{85}{100}$$ $$u_1=51$$

  2. We note $(u_n)$ the price of the sweater after $n$ period of sale.

    • a. $u_0$ and $u_1$

      60, 51

    • b. Express based on $n$ $$u_{n+1}=u_n\times \frac{85}{100}$$


8

Represent graphically, the 5 first terms of the sequence $(u_n)$ defined by $u_0=6$ and $u_{n+1}=\Large\frac{-2}{3}\small u_n + 5$

result exercise 8p59


5 Use and recognise arithmetic sequence

  1. Let, $(u_n)$ an artihmetic sequence of first term $u_0=5$ and of common difference $-2$

    • a. Give the expression of $u_n$

      $u_{n+1}=u_n-2n$

    • b. Give value of $u_{25}$

      $u_{25}=5-2\times{25}=-45$

  2. Are the following sequences arithmetic $$v_n=3n-2$$

    yes

    $v_0=-2$

    $v_1=1$

    $v_2=4$

    $v_1-v_0 = 3 = v_2-v_1$

    Demonstration

    $$v_{n+1}-v_n=[3(n+1)-2]-(3n-2)$$ > $$=3n+1-3n+2$$ > $$v_{n+1}-v_n=3$$ $$w_n=n^2+1$$ no, it is geometric $$v_{n+1}-v_n=[(n+1)^2+1]-(n^2+1)$$ > $$=n^2+2n+1-n^2-1$$ > $$v_{n+1}-v_n=2n$$ $$w_n=\frac{n^2+n}{n}$$

    $$w_n=\frac{n^2+n}{n} = \frac{\frac{1}{n}(n^2+n)}{1} = n + 1$$ $$w_{n+1}-w_n=(n+2)-(n+1)$$ $$w_{n+1}-w_n=1$$


9

Let, $(u_n)$ an arithmetic sequence of $u_0=-2$ and of common difference $3$

  1. Give the expression of $u_n$

    $u_{n+1}=u_n+3$

  2. Indentify the value of $u_{20}$

    $u_{20}=-2+20\times{3}=58$

10

Are the following suites arithmetic

  1. $v_n=\sqrt{n}$

    no $$\sqrt{2} - \sqrt{1} \ne \sqrt{3} - \sqrt{2}$$

  2. $w_n=-n+4$

    yes $$w_{n+1}-w_n=(-n-1+4)-(-n+4)$$ > $$w_{n+1}-w_n=-n+3+n-4$$ > $$w_{n+1}-w_n=-1$$


6

Let $(u_n)$ be a geometrical sequence of common ratio $2$ such as $u_2=\Large\frac{1}{4}$

  1. Give the expression $u_n$ depending on $n$
  • a. $u_n$ $$\forall n \in \mathbb{N}, \forall p \in \mathbb{N} \space u_{n+p}=u_p\times{q^{n-p}}$$ $$u_n=\frac{1}{4}\times{2^{n-2}}$$
  • b. Value of $u_6$ $$u_6=\frac{1}{4}\times{2^4} = 4$$
  1. Are the following sequences geometric $$u_n=n^2+1$$

    No $$u_0=0+1=1$$ > $$u_1=1+1=2$$ > $$u_2=4+1=5$$ > $$\frac{u_0}{u_1}\ne\frac{u_1}{u_2}$$ $$u_n=2^{n+1}$$ yes $$\frac{u_{n+1}}{u_n}=\frac{2^{n+2}}{2^{n+1}}=2$$ $$u_n=\frac{1}{n}$$ No $$u_1=\frac{1}{1}=1$$ > $$u_2=\frac{1}{2}$$ > $$u_3=\frac{1}{3}$$ > $$\frac{u_2}{u_1}\ne\frac{u_3}{u_2}$$


11

Let $(u_n)$ be a geometrical sequence of $u_0=-2$ and of common ratio 2.

  1. Give the expression of $u_n$ based on $n$ $$u_n=-2\times{2^n}$$
  2. What is the value of $u_{10}$ $$u_{10}=-2\times{2^{10}}=–2\times{1024}=-2048$$

12

Are the following sequences geometric? $$v_n=\sqrt{n}$$

No $$u_0=0$$ > $$u_1=1$$ > $$u_2=\sqrt{2}$$ > $$\frac{u_1}{u_0}\ne\frac{u_2}{u_1}$$ $$w_n=\frac{1}{3^n}$$ Yes $$\frac{w_{n+1}}{w_n}=\frac{\frac{1}{3^{n+1}}}{\frac{1}{3^n}}=\frac{\frac{1}{3}\times{3^{n+1}}}{\frac{1}{3}\times{3^n}}=3$$


7. Sums for arithmetic and geometric sequences

  1. Calculate the sum of $101+102+103+...+998+999$ $$1+2+...+n=\frac{n(n+1)}{2}$$ $$\frac{999(999+1)}{2} - \frac{100(100+1)}{2} = 494,450$$
  2. $(u_n)$ is an arithmetic sequence defined by $u_0=2$ and of common difference 3. Calculate the sum $S=u_0+u_1+...+u_{15}$ $$S=15 \times \frac{u_0+u_{15}}{2}$$ $$S=15 \times \frac{2+47}{2}$$ $$S=392$$

    correction

  3. $(u_n)$ a geometric sequence defined by $u_0=3$ and of common difference 2. Calculate the sum of the first 20 terms. $$S=u_0+u_1+...+u_{19}$$ $$u_n=u_0\times{q^n}$$ $$S = 3 + (3\times{2^1}) + ... + (3\times{2^{19}})$$ $$S = 3(2^0+2^1+...+2^{19})$$ $$S = 3 \times \frac{1-q^{n+1}}{1-q}$$ $$S = 3 \times \frac{1-2^{20}}{-1}$$ $$S = 3,145,725$$

13.

Calculate the following sums

  1. $1+2+...+150 = \large\frac{150\times 151}{2}\small = 11,325$
  2. $50 + 51 + ... + 150 = \large\frac{150\times 151}{2} \small- \large\frac{49\times 50}{2}\small = 10,100$

14.

Calculate the following sums

  • a) $1 + \frac{1}{2} + \frac{1}{2^2} + ... + \frac{1}{2^{16}}$ $$\frac{\frac{1}{2^{16}}(\frac{1}{2^{16}}+1)}{2} = 7\times10^{-6}$$
  • b) $1 + \frac{1}{2} + \frac{1}{2^2} + ... + \frac{1}{2^{10}}$ $$\frac{\frac{1}{2^{10}}(\frac{1}{2^{10}}+1)}{2} = 488\times10^{-6}$$
  • b) $\frac{1}{2^{11}} + \frac{1}{2^{12}} + ... + \frac{1}{2^{16}}$ $$-4.81\times 10^{-4}$$

15.

  1. Let $(u_n)$ be an arithmetic sequence defined by $u_0=-2$ and $d = 4$. Calculate the sum of the first 21 terms. $$u_n = u_0 + d\times n$$ $$S = u_0 + (u_0+d\times 1) + (u_0+d\times 2) + ... + (u_0+d\times 20)$$ $$S = 21 \times u_0 + (d+2d+...+20d)$$ $$S = 21 \times u_0 + d \times (1+2+...+20)$$ $$S = 21 \times -2 + 4 \times \frac{20 \times 21}{2}$$ $$S = -38 \times 210$$ $$S = -7,980$$

  2. Let $(u_n)$ be a geometrical sequence defined by $u_0=\frac{1}{2}$ and common ratio 3. Calculate the sum of the first 10 terms.

$$u_n = u_0 \times 3^n$$ $$S = u_0+u_1+...+u_9$$ $$S = u_0(1+1^3+2^3+...+9^3)$$ $$S = \frac{1}{2}\frac{1-3^{10}}{1-3}$$ $$S = \frac{1-3^{10}}{2(1-3)}$$ $$S = 14,762$$

16.

$(u_0)=4$, common difference -3

  1. Calculate $u_0+u_1+...+u_{50}$ $$S = 51\times\frac{-142}{2} = -3,621$$
  2. Sum, 20 first terms $$S = 20\times\frac{-49}{2} = -490$$
  3. Guess the sum of $u_{20}+...u_{50}$ $$-3,621 + 490 = -3131$$

8 Sequence variations

Study the variations of the sequence $(u_n)$ for $n \in \mathbb{N}$:

a) $u_n = n^2 + n$