diff --git a/src/layers/conv.jl b/src/layers/conv.jl index 0daa3626ea..b3d7c7c68e 100644 --- a/src/layers/conv.jl +++ b/src/layers/conv.jl @@ -100,7 +100,7 @@ See also [`ConvTranspose`](@ref), [`DepthwiseConv`](@ref), [`CrossCor`](@ref). # Examples ```jldoctest -julia> xs = rand32(100, 100, 3, 50); # a batch of 50 RGB images +julia> xs = rand(Float32, 100, 100, 3, 50); # a batch of 50 RGB images julia> layer = Conv((5,5), 3 => 7, relu; bias = false) Conv((5, 5), 3 => 7, relu, bias=false) # 525 parameters @@ -124,12 +124,12 @@ julia> Conv((5,5), 3 => 7; stride = 2, dilation = 4)(xs) |> size ```jldoctest julia> weight = rand(Float32, 3, 4, 5); -julia> bias = zeros(5); +julia> bias = zeros(Float32, 5); julia> layer = Conv(weight, bias, sigmoid) # expects 1 spatial dimension Conv((3,), 4 => 5, σ) # 65 parameters -julia> layer(randn(100, 4, 64)) |> size +julia> layer(randn(Float32, 100, 4, 64)) |> size (98, 5, 64) julia> Flux.trainables(layer) |> length @@ -243,7 +243,7 @@ See also [`Conv`](@ref) for more detailed description of keywords. # Examples ```jldoctest -julia> xs = rand32(100, 100, 3, 50); # a batch of 50 RGB images +julia> xs = rand(Float32, 100, 100, 3, 50); # a batch of 50 RGB images julia> layer = ConvTranspose((5,5), 3 => 7, relu) ConvTranspose((5, 5), 3 => 7, relu) # 532 parameters @@ -262,14 +262,14 @@ julia> ConvTranspose((5,5), 3 => 7, stride=3, pad=SamePad())(xs) |> size ``` ```jldoctest -julia> weight = rand(3, 4, 5); +julia> weight = rand(Float32, 3, 4, 5); -julia> bias = zeros(4); +julia> bias = zeros(Float32, 4); julia> layer = ConvTranspose(weight, bias, sigmoid) ConvTranspose((3,), 5 => 4, σ) # 64 parameters -julia> layer(randn(100, 5, 64)) |> size # transposed convolution will increase the dimension size (upsampling) +julia> layer(randn(Float32, 100, 5, 64)) |> size # transposed convolution will increase the dimension size (upsampling) (102, 4, 64) julia> Flux.trainables(layer) |> length @@ -427,9 +427,9 @@ julia> CrossCor((5,5), 3 => 7, stride=3, pad=(2,0))(xs) |> size ``` ```jldoctest -julia> weight = rand(3, 4, 5); +julia> weight = rand(Float32, 3, 4, 5); -julia> bias = zeros(5); +julia> bias = zeros(Float32, 5); julia> layer = CrossCor(weight, bias, relu) CrossCor((3,), 4 => 5, relu) # 65 parameters