forked from matsui528/sis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
63 lines (47 loc) · 1.8 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import argparse
import os
import h5py
import numpy as np
from PIL import Image
from feature_extractor import FeatureExtractor
from datetime import datetime
from flask import Flask, request, render_template, jsonify
app = Flask(__name__)
# Read image features
fe = FeatureExtractor()
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--dataset", required=True, help="path to input dataset")
args = vars(ap.parse_args())
# load all features from our storage,
# features may need to be parsed one by one on demand for every request,
# if it can't fit into the RAM
features = []
img_paths = []
hf = h5py.File("./static/feature/data.h5", "r")
for name in hf:
features.append(hf.get(name))
img_paths.append(args['dataset'] + '/' + name)
features = np.array(features)
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == 'POST':
file = request.files['query_img']
# save query image
img = Image.open(file.stream) # PIL image
uploaded_img_path = "static/uploaded/" + datetime.now().isoformat().replace(":", ".") + "_" + file.filename
img.save(uploaded_img_path)
# extract features from the uploaded file
query = fe.process_predict_and_normalize(uploaded_img_path)
# L2 distances to features
dists = np.linalg.norm(features - query, axis=1)
# top 1 result as we are interested only in the single closest image
ids = np.argsort(dists)[:1]
# zip paths with scores
scores = [(dists[_id], img_paths[_id]) for _id in ids]
os.remove(uploaded_img_path)
return jsonify({'path': str(scores[0][1]), 'score': float(scores[0][0])})
else:
return render_template('index.html')
if __name__ == "__main__":
app.run("0.0.0.0")