-
-
Notifications
You must be signed in to change notification settings - Fork 5
/
generate.go
639 lines (565 loc) · 19.7 KB
/
generate.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build ignore
package main
// Running this generator requires addchain v0.4.0, which can be installed with
//
// go install github.com/mmcloughlin/addchain/cmd/[email protected]
//
import (
"bytes"
"crypto/elliptic"
"fmt"
"go/format"
"io"
"log"
"math/big"
"os"
"os/exec"
"strings"
"text/template"
)
var curves = []struct {
P string
Element string
Params *elliptic.CurveParams
BuildTags string
}{
{
P: "P224",
Element: "fiat.P224Element",
Params: elliptic.P224().Params(),
},
{
P: "P256",
Element: "fiat.P256Element",
Params: elliptic.P256().Params(),
BuildTags: "purego || (!amd64 && !arm64 && !(ppc64le && go1.19) && !s390x)",
},
{
P: "P384",
Element: "fiat.P384Element",
Params: elliptic.P384().Params(),
},
{
P: "P521",
Element: "fiat.P521Element",
Params: elliptic.P521().Params(),
},
}
func main() {
t := template.Must(template.New("tmplNISTEC").Parse(tmplNISTEC))
tmplAddchainFile, err := os.CreateTemp("", "addchain-template")
if err != nil {
log.Fatal(err)
}
defer os.Remove(tmplAddchainFile.Name())
if _, err := io.WriteString(tmplAddchainFile, tmplAddchain); err != nil {
log.Fatal(err)
}
if err := tmplAddchainFile.Close(); err != nil {
log.Fatal(err)
}
for _, c := range curves {
p := strings.ToLower(c.P)
elementLen := (c.Params.BitSize + 7) / 8
B := fmt.Sprintf("%#v", c.Params.B.FillBytes(make([]byte, elementLen)))
Gx := fmt.Sprintf("%#v", c.Params.Gx.FillBytes(make([]byte, elementLen)))
Gy := fmt.Sprintf("%#v", c.Params.Gy.FillBytes(make([]byte, elementLen)))
log.Printf("Generating %s.go...", p)
f, err := os.Create(p + ".go")
if err != nil {
log.Fatal(err)
}
defer f.Close()
buf := &bytes.Buffer{}
if err := t.Execute(buf, map[string]interface{}{
"P": c.P, "p": p, "B": B, "Gx": Gx, "Gy": Gy,
"Element": c.Element, "ElementLen": elementLen,
"BuildTags": c.BuildTags,
}); err != nil {
log.Fatal(err)
}
out, err := format.Source(buf.Bytes())
if err != nil {
log.Fatal(err)
}
if _, err := f.Write(out); err != nil {
log.Fatal(err)
}
// If p = 3 mod 4, implement modular square root by exponentiation.
mod4 := new(big.Int).Mod(c.Params.P, big.NewInt(4))
if mod4.Cmp(big.NewInt(3)) != 0 {
continue
}
exp := new(big.Int).Add(c.Params.P, big.NewInt(1))
exp.Div(exp, big.NewInt(4))
tmp, err := os.CreateTemp("", "addchain-"+p)
if err != nil {
log.Fatal(err)
}
defer os.Remove(tmp.Name())
cmd := exec.Command("addchain", "search", fmt.Sprintf("%d", exp))
cmd.Stderr = os.Stderr
cmd.Stdout = tmp
if err := cmd.Run(); err != nil {
log.Fatal(err)
}
if err := tmp.Close(); err != nil {
log.Fatal(err)
}
cmd = exec.Command("addchain", "gen", "-tmpl", tmplAddchainFile.Name(), tmp.Name())
cmd.Stderr = os.Stderr
out, err = cmd.Output()
if err != nil {
log.Fatal(err)
}
out = bytes.Replace(out, []byte("Element"), []byte(c.Element), -1)
out = bytes.Replace(out, []byte("sqrtCandidate"), []byte(p+"SqrtCandidate"), -1)
out, err = format.Source(out)
if err != nil {
log.Fatal(err)
}
if _, err := f.Write(out); err != nil {
log.Fatal(err)
}
}
}
const tmplNISTEC = `// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Code generated by generate.go. DO NOT EDIT.
{{ if .BuildTags }}
//go:build {{ .BuildTags }}
{{ end }}
package nistec
import (
"crypto/subtle"
"errors"
"filippo.io/nistec/internal/fiat"
"sync"
)
// {{.p}}ElementLength is the length of an element of the base or scalar field,
// which have the same bytes length for all NIST P curves.
const {{.p}}ElementLength = {{ .ElementLen }}
// {{.P}}Point is a {{.P}} point. The zero value is NOT valid.
type {{.P}}Point struct {
// The point is represented in projective coordinates (X:Y:Z),
// where x = X/Z and y = Y/Z.
x, y, z *{{.Element}}
}
// New{{.P}}Point returns a new {{.P}}Point representing the point at infinity point.
func New{{.P}}Point() *{{.P}}Point {
return &{{.P}}Point{
x: new({{.Element}}),
y: new({{.Element}}).One(),
z: new({{.Element}}),
}
}
// SetGenerator sets p to the canonical generator and returns p.
func (p *{{.P}}Point) SetGenerator() *{{.P}}Point {
p.x.SetBytes({{.Gx}})
p.y.SetBytes({{.Gy}})
p.z.One()
return p
}
// Set sets p = q and returns p.
func (p *{{.P}}Point) Set(q *{{.P}}Point) *{{.P}}Point {
p.x.Set(q.x)
p.y.Set(q.y)
p.z.Set(q.z)
return p
}
// SetBytes sets p to the compressed, uncompressed, or infinity value encoded in
// b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on
// the curve, it returns nil and an error, and the receiver is unchanged.
// Otherwise, it returns p.
func (p *{{.P}}Point) SetBytes(b []byte) (*{{.P}}Point, error) {
switch {
// Point at infinity.
case len(b) == 1 && b[0] == 0:
return p.Set(New{{.P}}Point()), nil
// Uncompressed form.
case len(b) == 1+2*{{.p}}ElementLength && b[0] == 4:
x, err := new({{.Element}}).SetBytes(b[1 : 1+{{.p}}ElementLength])
if err != nil {
return nil, err
}
y, err := new({{.Element}}).SetBytes(b[1+{{.p}}ElementLength:])
if err != nil {
return nil, err
}
if err := {{.p}}CheckOnCurve(x, y); err != nil {
return nil, err
}
p.x.Set(x)
p.y.Set(y)
p.z.One()
return p, nil
// Compressed form.
case len(b) == 1+{{.p}}ElementLength && (b[0] == 2 || b[0] == 3):
x, err := new({{.Element}}).SetBytes(b[1:])
if err != nil {
return nil, err
}
// y² = x³ - 3x + b
y := {{.p}}Polynomial(new({{.Element}}), x)
if !{{.p}}Sqrt(y, y) {
return nil, errors.New("invalid {{.P}} compressed point encoding")
}
// Select the positive or negative root, as indicated by the least
// significant bit, based on the encoding type byte.
otherRoot := new({{.Element}})
otherRoot.Sub(otherRoot, y)
cond := y.Bytes()[{{.p}}ElementLength-1]&1 ^ b[0]&1
y.Select(otherRoot, y, int(cond))
p.x.Set(x)
p.y.Set(y)
p.z.One()
return p, nil
default:
return nil, errors.New("invalid {{.P}} point encoding")
}
}
var _{{.p}}B *{{.Element}}
var _{{.p}}BOnce sync.Once
func {{.p}}B() *{{.Element}} {
_{{.p}}BOnce.Do(func() {
_{{.p}}B, _ = new({{.Element}}).SetBytes({{.B}})
})
return _{{.p}}B
}
// {{.p}}Polynomial sets y2 to x³ - 3x + b, and returns y2.
func {{.p}}Polynomial(y2, x *{{.Element}}) *{{.Element}} {
y2.Square(x)
y2.Mul(y2, x)
threeX := new({{.Element}}).Add(x, x)
threeX.Add(threeX, x)
y2.Sub(y2, threeX)
return y2.Add(y2, {{.p}}B())
}
func {{.p}}CheckOnCurve(x, y *{{.Element}}) error {
// y² = x³ - 3x + b
rhs := {{.p}}Polynomial(new({{.Element}}), x)
lhs := new({{.Element}}).Square(y)
if rhs.Equal(lhs) != 1 {
return errors.New("{{.P}} point not on curve")
}
return nil
}
// Bytes returns the uncompressed or infinity encoding of p, as specified in
// SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at
// infinity is shorter than all other encodings.
func (p *{{.P}}Point) Bytes() []byte {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var out [1+2*{{.p}}ElementLength]byte
return p.bytes(&out)
}
func (p *{{.P}}Point) bytes(out *[1+2*{{.p}}ElementLength]byte) []byte {
if p.z.IsZero() == 1 {
return append(out[:0], 0)
}
zinv := new({{.Element}}).Invert(p.z)
x := new({{.Element}}).Mul(p.x, zinv)
y := new({{.Element}}).Mul(p.y, zinv)
buf := append(out[:0], 4)
buf = append(buf, x.Bytes()...)
buf = append(buf, y.Bytes()...)
return buf
}
// BytesX returns the encoding of the x-coordinate of p, as specified in SEC 1,
// Version 2.0, Section 2.3.5, or an error if p is the point at infinity.
func (p *{{.P}}Point) BytesX() ([]byte, error) {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var out [{{.p}}ElementLength]byte
return p.bytesX(&out)
}
func (p *{{.P}}Point) bytesX(out *[{{.p}}ElementLength]byte) ([]byte, error) {
if p.z.IsZero() == 1 {
return nil, errors.New("{{.P}} point is the point at infinity")
}
zinv := new({{.Element}}).Invert(p.z)
x := new({{.Element}}).Mul(p.x, zinv)
return append(out[:0], x.Bytes()...), nil
}
// BytesCompressed returns the compressed or infinity encoding of p, as
// specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the
// point at infinity is shorter than all other encodings.
func (p *{{.P}}Point) BytesCompressed() []byte {
// This function is outlined to make the allocations inline in the caller
// rather than happen on the heap.
var out [1 + {{.p}}ElementLength]byte
return p.bytesCompressed(&out)
}
func (p *{{.P}}Point) bytesCompressed(out *[1 + {{.p}}ElementLength]byte) []byte {
if p.z.IsZero() == 1 {
return append(out[:0], 0)
}
zinv := new({{.Element}}).Invert(p.z)
x := new({{.Element}}).Mul(p.x, zinv)
y := new({{.Element}}).Mul(p.y, zinv)
// Encode the sign of the y coordinate (indicated by the least significant
// bit) as the encoding type (2 or 3).
buf := append(out[:0], 2)
buf[0] |= y.Bytes()[{{.p}}ElementLength-1] & 1
buf = append(buf, x.Bytes()...)
return buf
}
// Add sets q = p1 + p2, and returns q. The points may overlap.
func (q *{{.P}}Point) Add(p1, p2 *{{.P}}Point) *{{.P}}Point {
// Complete addition formula for a = -3 from "Complete addition formulas for
// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2.
t0 := new({{.Element}}).Mul(p1.x, p2.x) // t0 := X1 * X2
t1 := new({{.Element}}).Mul(p1.y, p2.y) // t1 := Y1 * Y2
t2 := new({{.Element}}).Mul(p1.z, p2.z) // t2 := Z1 * Z2
t3 := new({{.Element}}).Add(p1.x, p1.y) // t3 := X1 + Y1
t4 := new({{.Element}}).Add(p2.x, p2.y) // t4 := X2 + Y2
t3.Mul(t3, t4) // t3 := t3 * t4
t4.Add(t0, t1) // t4 := t0 + t1
t3.Sub(t3, t4) // t3 := t3 - t4
t4.Add(p1.y, p1.z) // t4 := Y1 + Z1
x3 := new({{.Element}}).Add(p2.y, p2.z) // X3 := Y2 + Z2
t4.Mul(t4, x3) // t4 := t4 * X3
x3.Add(t1, t2) // X3 := t1 + t2
t4.Sub(t4, x3) // t4 := t4 - X3
x3.Add(p1.x, p1.z) // X3 := X1 + Z1
y3 := new({{.Element}}).Add(p2.x, p2.z) // Y3 := X2 + Z2
x3.Mul(x3, y3) // X3 := X3 * Y3
y3.Add(t0, t2) // Y3 := t0 + t2
y3.Sub(x3, y3) // Y3 := X3 - Y3
z3 := new({{.Element}}).Mul({{.p}}B(), t2) // Z3 := b * t2
x3.Sub(y3, z3) // X3 := Y3 - Z3
z3.Add(x3, x3) // Z3 := X3 + X3
x3.Add(x3, z3) // X3 := X3 + Z3
z3.Sub(t1, x3) // Z3 := t1 - X3
x3.Add(t1, x3) // X3 := t1 + X3
y3.Mul({{.p}}B(), y3) // Y3 := b * Y3
t1.Add(t2, t2) // t1 := t2 + t2
t2.Add(t1, t2) // t2 := t1 + t2
y3.Sub(y3, t2) // Y3 := Y3 - t2
y3.Sub(y3, t0) // Y3 := Y3 - t0
t1.Add(y3, y3) // t1 := Y3 + Y3
y3.Add(t1, y3) // Y3 := t1 + Y3
t1.Add(t0, t0) // t1 := t0 + t0
t0.Add(t1, t0) // t0 := t1 + t0
t0.Sub(t0, t2) // t0 := t0 - t2
t1.Mul(t4, y3) // t1 := t4 * Y3
t2.Mul(t0, y3) // t2 := t0 * Y3
y3.Mul(x3, z3) // Y3 := X3 * Z3
y3.Add(y3, t2) // Y3 := Y3 + t2
x3.Mul(t3, x3) // X3 := t3 * X3
x3.Sub(x3, t1) // X3 := X3 - t1
z3.Mul(t4, z3) // Z3 := t4 * Z3
t1.Mul(t3, t0) // t1 := t3 * t0
z3.Add(z3, t1) // Z3 := Z3 + t1
q.x.Set(x3)
q.y.Set(y3)
q.z.Set(z3)
return q
}
// Double sets q = p + p, and returns q. The points may overlap.
func (q *{{.P}}Point) Double(p *{{.P}}Point) *{{.P}}Point {
// Complete addition formula for a = -3 from "Complete addition formulas for
// prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2.
t0 := new({{.Element}}).Square(p.x) // t0 := X ^ 2
t1 := new({{.Element}}).Square(p.y) // t1 := Y ^ 2
t2 := new({{.Element}}).Square(p.z) // t2 := Z ^ 2
t3 := new({{.Element}}).Mul(p.x, p.y) // t3 := X * Y
t3.Add(t3, t3) // t3 := t3 + t3
z3 := new({{.Element}}).Mul(p.x, p.z) // Z3 := X * Z
z3.Add(z3, z3) // Z3 := Z3 + Z3
y3 := new({{.Element}}).Mul({{.p}}B(), t2) // Y3 := b * t2
y3.Sub(y3, z3) // Y3 := Y3 - Z3
x3 := new({{.Element}}).Add(y3, y3) // X3 := Y3 + Y3
y3.Add(x3, y3) // Y3 := X3 + Y3
x3.Sub(t1, y3) // X3 := t1 - Y3
y3.Add(t1, y3) // Y3 := t1 + Y3
y3.Mul(x3, y3) // Y3 := X3 * Y3
x3.Mul(x3, t3) // X3 := X3 * t3
t3.Add(t2, t2) // t3 := t2 + t2
t2.Add(t2, t3) // t2 := t2 + t3
z3.Mul({{.p}}B(), z3) // Z3 := b * Z3
z3.Sub(z3, t2) // Z3 := Z3 - t2
z3.Sub(z3, t0) // Z3 := Z3 - t0
t3.Add(z3, z3) // t3 := Z3 + Z3
z3.Add(z3, t3) // Z3 := Z3 + t3
t3.Add(t0, t0) // t3 := t0 + t0
t0.Add(t3, t0) // t0 := t3 + t0
t0.Sub(t0, t2) // t0 := t0 - t2
t0.Mul(t0, z3) // t0 := t0 * Z3
y3.Add(y3, t0) // Y3 := Y3 + t0
t0.Mul(p.y, p.z) // t0 := Y * Z
t0.Add(t0, t0) // t0 := t0 + t0
z3.Mul(t0, z3) // Z3 := t0 * Z3
x3.Sub(x3, z3) // X3 := X3 - Z3
z3.Mul(t0, t1) // Z3 := t0 * t1
z3.Add(z3, z3) // Z3 := Z3 + Z3
z3.Add(z3, z3) // Z3 := Z3 + Z3
q.x.Set(x3)
q.y.Set(y3)
q.z.Set(z3)
return q
}
// Select sets q to p1 if cond == 1, and to p2 if cond == 0.
func (q *{{.P}}Point) Select(p1, p2 *{{.P}}Point, cond int) *{{.P}}Point {
q.x.Select(p1.x, p2.x, cond)
q.y.Select(p1.y, p2.y, cond)
q.z.Select(p1.z, p2.z, cond)
return q
}
// A {{.p}}Table holds the first 15 multiples of a point at offset -1, so [1]P
// is at table[0], [15]P is at table[14], and [0]P is implicitly the identity
// point.
type {{.p}}Table [15]*{{.P}}Point
// Select selects the n-th multiple of the table base point into p. It works in
// constant time by iterating over every entry of the table. n must be in [0, 15].
func (table *{{.p}}Table) Select(p *{{.P}}Point, n uint8) {
if n >= 16 {
panic("nistec: internal error: {{.p}}Table called with out-of-bounds value")
}
p.Set(New{{.P}}Point())
for i := uint8(1); i < 16; i++ {
cond := subtle.ConstantTimeByteEq(i, n)
p.Select(table[i-1], p, cond)
}
}
// ScalarMult sets p = scalar * q, and returns p.
func (p *{{.P}}Point) ScalarMult(q *{{.P}}Point, scalar []byte) (*{{.P}}Point, error) {
// Compute a {{.p}}Table for the base point q. The explicit New{{.P}}Point
// calls get inlined, letting the allocations live on the stack.
var table = {{.p}}Table{New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(),
New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(),
New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(),
New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point()}
table[0].Set(q)
for i := 1; i < 15; i += 2 {
table[i].Double(table[i/2])
table[i+1].Add(table[i], q)
}
// Instead of doing the classic double-and-add chain, we do it with a
// four-bit window: we double four times, and then add [0-15]P.
t := New{{.P}}Point()
p.Set(New{{.P}}Point())
for i, byte := range scalar {
// No need to double on the first iteration, as p is the identity at
// this point, and [N]∞ = ∞.
if i != 0 {
p.Double(p)
p.Double(p)
p.Double(p)
p.Double(p)
}
windowValue := byte >> 4
table.Select(t, windowValue)
p.Add(p, t)
p.Double(p)
p.Double(p)
p.Double(p)
p.Double(p)
windowValue = byte & 0b1111
table.Select(t, windowValue)
p.Add(p, t)
}
return p, nil
}
var {{.p}}GeneratorTable *[{{.p}}ElementLength * 2]{{.p}}Table
var {{.p}}GeneratorTableOnce sync.Once
// generatorTable returns a sequence of {{.p}}Tables. The first table contains
// multiples of G. Each successive table is the previous table doubled four
// times.
func (p *{{.P}}Point) generatorTable() *[{{.p}}ElementLength * 2]{{.p}}Table {
{{.p}}GeneratorTableOnce.Do(func() {
{{.p}}GeneratorTable = new([{{.p}}ElementLength * 2]{{.p}}Table)
base := New{{.P}}Point().SetGenerator()
for i := 0; i < {{.p}}ElementLength*2; i++ {
{{.p}}GeneratorTable[i][0] = New{{.P}}Point().Set(base)
for j := 1; j < 15; j++ {
{{.p}}GeneratorTable[i][j] = New{{.P}}Point().Add({{.p}}GeneratorTable[i][j-1], base)
}
base.Double(base)
base.Double(base)
base.Double(base)
base.Double(base)
}
})
return {{.p}}GeneratorTable
}
// ScalarBaseMult sets p = scalar * B, where B is the canonical generator, and
// returns p.
func (p *{{.P}}Point) ScalarBaseMult(scalar []byte) (*{{.P}}Point, error) {
if len(scalar) != {{.p}}ElementLength {
return nil, errors.New("invalid scalar length")
}
tables := p.generatorTable()
// This is also a scalar multiplication with a four-bit window like in
// ScalarMult, but in this case the doublings are precomputed. The value
// [windowValue]G added at iteration k would normally get doubled
// (totIterations-k)×4 times, but with a larger precomputation we can
// instead add [2^((totIterations-k)×4)][windowValue]G and avoid the
// doublings between iterations.
t := New{{.P}}Point()
p.Set(New{{.P}}Point())
tableIndex := len(tables) - 1
for _, byte := range scalar {
windowValue := byte >> 4
tables[tableIndex].Select(t, windowValue)
p.Add(p, t)
tableIndex--
windowValue = byte & 0b1111
tables[tableIndex].Select(t, windowValue)
p.Add(p, t)
tableIndex--
}
return p, nil
}
// {{.p}}Sqrt sets e to a square root of x. If x is not a square, {{.p}}Sqrt returns
// false and e is unchanged. e and x can overlap.
func {{.p}}Sqrt(e, x *{{ .Element }}) (isSquare bool) {
candidate := new({{ .Element }})
{{.p}}SqrtCandidate(candidate, x)
square := new({{ .Element }}).Square(candidate)
if square.Equal(x) != 1 {
return false
}
e.Set(candidate)
return true
}
`
const tmplAddchain = `
// sqrtCandidate sets z to a square root candidate for x. z and x must not overlap.
func sqrtCandidate(z, x *Element) {
// Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate.
//
// The sequence of {{ .Ops.Adds }} multiplications and {{ .Ops.Doubles }} squarings is derived from the
// following addition chain generated with {{ .Meta.Module }} {{ .Meta.ReleaseTag }}.
//
{{- range lines (format .Script) }}
// {{ . }}
{{- end }}
//
{{- range .Program.Temporaries }}
var {{ . }} = new(Element)
{{- end }}
{{ range $i := .Program.Instructions -}}
{{- with add $i.Op }}
{{ $i.Output }}.Mul({{ .X }}, {{ .Y }})
{{- end -}}
{{- with double $i.Op }}
{{ $i.Output }}.Square({{ .X }})
{{- end -}}
{{- with shift $i.Op -}}
{{- $first := 0 -}}
{{- if ne $i.Output.Identifier .X.Identifier }}
{{ $i.Output }}.Square({{ .X }})
{{- $first = 1 -}}
{{- end }}
for s := {{ $first }}; s < {{ .S }}; s++ {
{{ $i.Output }}.Square({{ $i.Output }})
}
{{- end -}}
{{- end }}
}
`