-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathgen_planargrid.py
64 lines (58 loc) · 3.1 KB
/
gen_planargrid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from GEN import GEN
class GENPlanarGrid(GEN):
def __init__(self, **kwargs):
super(GENPlanarGrid, self).__init__(**kwargs)
self.grid_info = None
self._EPS = 1e-7
def repr_fn(self, node_pos, x_inp, **kwargs):
return self.compute_coordinates_planar_grid(node_pos, x_inp, **kwargs)
def set_grid_info(self, grid_info):
self.grid_info = grid_info
def compute_coordinates_planar_grid(self, node_pos, x, grid_info=None):
if grid_info is None: grid_info = self.grid_info
assert grid_info is not None
#Take out batch dimension
bs = 1 if len(x.shape) == 2 else x.shape[0]
inps_per_elt, features = x.shape[-2], x.shape[-1]
pos = x.reshape(-1,features)[:,:2]
#Find the correct square
nx = torch.nn.functional.relu(
(pos[:,0]-self._EPS)/grid_info['dx']).floor_().long()
ny = torch.nn.functional.relu(
(pos[:,1]-self._EPS)/grid_info['dy']).floor_().long()
bottom_left_idx = nx * grid_info['n_y'] + ny
bottom_left = torch.index_select(node_pos, dim=0, index=bottom_left_idx)
bottom_right_idx = nx * grid_info['n_y'] + ny + 1
bottom_right = torch.index_select(
node_pos, dim=0, index=bottom_right_idx)
top_left_idx = (nx+1) * grid_info['n_y'] + ny
top_left = torch.index_select(node_pos, dim=0, index=top_left_idx)
top_right_idx = (nx+1) * grid_info['n_y'] + ny + 1
top_right = torch.index_select(node_pos, dim=0, index=top_right_idx)
# Here we use a math trick to compute the weightings
# each point is in a square, which we'll normalize to width,height (1,1)
# The weighting of each point is equal to the area of the rectangle
# between pos and the opposite corner.
dd = torch.FloatTensor([
grid_info['dx'], grid_info['dy']]).to(device=top_right.device)
bottom_left_score = torch.prod(torch.abs(top_right - pos)/dd, dim=1)
bottom_right_score = torch.prod(torch.abs(top_left - pos)/dd, dim=1)
top_left_score = torch.prod(torch.abs(bottom_right - pos)/dd, dim=1)
top_right_score = torch.prod(torch.abs(bottom_left - pos)/dd, dim=1)
scores = torch.zeros(pos.shape[0], node_pos.shape[0]).to(device=dd.device)
scores.scatter_(dim=1, index=torch.unsqueeze(bottom_left_idx, dim=1),
src=torch.unsqueeze(bottom_left_score, dim=1))
scores.scatter_(dim=1, index=torch.unsqueeze(bottom_right_idx, dim=1),
src=torch.unsqueeze(bottom_right_score, dim=1))
scores.scatter_(dim=1, index=torch.unsqueeze(top_left_idx, dim=1),
src=torch.unsqueeze(top_left_score, dim=1))
scores.scatter_(dim=1, index=torch.unsqueeze(top_right_idx, dim=1),
src=torch.unsqueeze(top_right_score, dim=1))
return scores.reshape((bs, inps_per_elt, -1))
def forward(self, Inp, Q, G=None, msg_steps=None, repr_fn_args={}):
if G is not None: self.set_grid_info(G.grid_info)
return super(GENPlanarGrid, self).__init__(**kwargs)