forked from sangjoon-park/Medical_X-VL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPretrain.py
executable file
·251 lines (197 loc) · 9.59 KB
/
Pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
'''
* Copyright (c) 2021, salesforce.com, inc.
* All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
'''
import argparse
import os
os.environ["TOKENIZERS_PARALLELISM"] = "true"
import ruamel.yaml as yaml
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from models.model_pretrain import XVLModel
from models.vit import interpolate_pos_embed
import utils
from dataset import create_dataset, create_sampler, create_loader
from scheduler import create_scheduler
from optim import create_optimizer
from ibot_utils import iBOTLoss
from transformers import AutoTokenizer
import ibot_utils
def train(model, data_loader, optimizer, tokenizer, epoch, warmup_steps, device, scheduler, config, fp16_scaler):
# train
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=50, fmt='{value:.6f}'))
metric_logger.add_meter('loss_mlm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_ita', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
metric_logger.add_meter('loss_itm', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
# metric_logger.add_meter('loss_ibot', utils.SmoothedValue(window_size=50, fmt='{value:.4f}'))
header = 'Train Epoch: [{}]'.format(epoch)
print_freq = 50
step_size = 100
warmup_iterations = warmup_steps * step_size
if args.distributed:
data_loader.sampler.set_epoch(epoch)
for i, (image, image_aug, impression) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
optimizer.zero_grad()
image = image.cuda(non_blocking=True)
image_aug = image_aug.cuda(non_blocking=True)
# fnd_input = tokenizer(findings, padding='longest', truncation=True, max_length=90, return_tensors="pt").to(device)
# imp_input = tokenizer(impression, padding='longest', truncation=True, max_length=60, return_tensors="pt").to(device)
# overall_input = tokenizer(overall, padding='longest', truncation=True, max_length=150, return_tensors="pt").to(device)
if epoch > 0:
alpha = config['alpha']
else:
alpha = config['alpha'] * min(1, i / len(data_loader))
# calculate iteration
it = len(data_loader) * epoch + i
if fp16_scaler is None:
loss_mlm, loss_ita, loss_itm = model(image, image_aug, impression, epoch, alpha=alpha)
loss = loss_mlm + loss_ita + 2 * loss_itm
else:
with torch.cuda.amp.autocast():
loss_mlm, loss_ita, loss_itm = model(image, image_aug, impression, epoch, alpha = alpha)
loss = loss_mlm + loss_ita + 2 * loss_itm
if fp16_scaler is None:
loss.backward()
if config['clip_grad']:
param_norms = ibot_utils.clip_gradients(model.module.visual_encoder, config['clip_grad'])
ibot_utils.cancel_gradients_last_layer(epoch, model.module.visual_encoder,
config['freeze_last_layer'])
optimizer.step()
else:
fp16_scaler.scale(loss).backward()
if config['clip_grad']:
fp16_scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
param_norms = ibot_utils.clip_gradients(model.module.visual_encoder, config['clip_grad'])
ibot_utils.cancel_gradients_last_layer(epoch, model.module.visual_encoder,
config['freeze_last_layer'])
fp16_scaler.step(optimizer)
fp16_scaler.update()
metric_logger.update(loss_mlm=loss_mlm.item())
metric_logger.update(loss_ita=loss_ita.item())
metric_logger.update(loss_itm=loss_itm.item())
# metric_logger.update(loss_ibot=loss_ibot.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
if epoch == 0 and i % step_size == 0 and i <= warmup_iterations:
scheduler.step(i // step_size)
# if it % 5000 == 0 and it > 20000:
# model_without_ddp = model.module
# save_obj = {
# 'model': model_without_ddp.state_dict(),
# 'config': config,
# }
# torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_it_{}.pth'.format(it)))
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger.global_avg())
return {k: "{:.3f}".format(meter.global_avg) for k, meter in metric_logger.meters.items()}
def main(args, config):
utils.init_distributed_mode(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
start_epoch = 0
max_epoch = config['schedular']['epochs']
warmup_steps = config['schedular']['warmup_epochs']
fp16_scaler = None
if config['use_fp16']:
fp16_scaler = torch.cuda.amp.GradScaler()
#### Dataset ####
print("Creating dataset")
datasets = [create_dataset('pretrain', config)]
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
samplers = create_sampler(datasets, [True], num_tasks, global_rank)
else:
samplers = [None]
data_loader = \
create_loader(datasets, samplers, batch_size=[config['batch_size']], num_workers=[4], is_trains=[True],
collate_fns=[None])[0]
url = "microsoft/BiomedVLP-CXR-BERT-specialized"
tokenizer = AutoTokenizer.from_pretrained(url, trust_remote_code=True)
#### Model ####
print("Creating model")
model = XVLModel(config=config)
model = model.to(device)
arg_opt = utils.AttrDict(config['optimizer'])
optimizer = create_optimizer(arg_opt, model)
arg_sche = utils.AttrDict(config['schedular'])
lr_scheduler, _ = create_scheduler(arg_sche, optimizer)
if args.checkpoint:
checkpoint = torch.load(args.checkpoint, map_location='cpu')
state_dict = checkpoint['model']
if args.resume:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
start_epoch = checkpoint['epoch'] + 1
else:
pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'], model.visual_encoder)
m_pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
model.visual_encoder_m)
state_dict['visual_encoder.pos_embed'] = pos_embed_reshaped
state_dict['visual_encoder_m.pos_embed'] = m_pos_embed_reshaped
model.load_state_dict(state_dict)
print('load checkpoint from %s' % args.checkpoint)
model.copy_params()
print('model parameters are copied.')
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
print("Start training")
start_time = time.time()
for epoch in range(start_epoch, max_epoch):
if epoch > 0:
lr_scheduler.step(epoch + warmup_steps)
train_stats = train(model, data_loader, optimizer, tokenizer, epoch, warmup_steps, device, lr_scheduler, config,
fp16_scaler)
if utils.is_main_process():
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
}
save_obj = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'config': config,
'epoch': epoch,
}
torch.save(save_obj, os.path.join(args.output_dir, 'checkpoint_%02d.pth' % epoch))
with open(os.path.join(args.output_dir, "log.txt"), "a") as f:
f.write(json.dumps(log_stats) + "\n")
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/Pretrain.yaml')
parser.add_argument('--checkpoint', default='')
parser.add_argument('--resume', default=True, type=bool)
parser.add_argument('--output_dir', default='Pretrain/')
parser.add_argument('--text_encoder', default='bert-base-uncased')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w'))
main(args, config)