-
Notifications
You must be signed in to change notification settings - Fork 161
/
Copy pathsimple_gradio_interface.py
111 lines (91 loc) · 3.49 KB
/
simple_gradio_interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import gradio as gr
import time
import torch
from medusa.model.medusa_model import MedusaModel
from fastchat.model.model_adapter import get_conversation_template
# Global variables
chat_history = ""
model = None
tokenizer = None
conv = None
def load_model_function(model_name, load_in_8bit=False, load_in_4bit=False):
model_name = model_name or "FasterDecoding/medusa-vicuna-7b-v1.3"
global model, tokenizer, conv
try:
model = MedusaModel.from_pretrained(
model_name,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
load_in_8bit=load_in_8bit,
load_in_4bit=load_in_4bit
)
tokenizer = model.get_tokenizer()
conv = get_conversation_template("vicuna")
return "Model loaded successfully!"
except:
return "Error loading the model. Please check the model name and try again."
def reset_conversation():
"""
Reset the global conversation and chat history
"""
global conv, chat_history
conv = get_conversation_template("vicuna")
chat_history = ""
def medusa_chat_interface(user_input, temperature, max_steps, no_history):
global model, tokenizer, conv, chat_history
# Reset the conversation if no_history is checked
if no_history:
reset_conversation()
if not model or not tokenizer:
return "Error: Model not loaded!", chat_history
chat_history += "\nYou: " + user_input
conv.append_message(conv.roles[0], user_input)
conv.append_message(conv.roles[1], '')
prompt = conv.get_prompt()
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.base_model.device)
outputs = model.medusa_generate(input_ids, temperature=temperature, max_steps=max_steps)
response = ""
for output in outputs:
response = output['text']
yield response, chat_history
time.sleep(0.01)
chat_history += "\nMedusa: " + response.strip()
return response, chat_history
if __name__ == "__main__":
load_model_interface = gr.Interface(
load_model_function,
[
gr.components.Textbox(placeholder="FasterDecoding/medusa-vicuna-7b-v1.3", label="Model Name"),
gr.components.Checkbox(label="Use 8-bit Quantization"),
gr.components.Checkbox(label="Use 4-bit Quantization"),
],
gr.components.Textbox(label="Model Load Status", type="text"),
description="Load Medusa Model",
title="Medusa Model Loader",
live=False,
api_name="load_model"
)
# Chat Interface
chat_interface = gr.Interface(
medusa_chat_interface,
[
gr.components.Textbox(placeholder="Ask Medusa...", label="User Input"),
gr.components.Slider(minimum=0, maximum=1.5, label="Temperature"),
gr.components.Slider(minimum=50, maximum=1000, label="Max Steps"),
gr.components.Checkbox(label="No History"),
],
[
gr.components.Textbox(label="Medusa's Response", type="text"),
gr.components.Textbox(label="Chat History", type="text")
],
live=False,
description="Chat with Medusa",
title="Medusa Chatbox",
api_name="chat"
)
# Combine the interfaces in a TabbedInterface
combined_interface = gr.TabbedInterface([load_model_interface, chat_interface],
["Load Model", "Chat"])
# Launch the combined interface
combined_interface.queue().launch()