-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest6a.m
153 lines (122 loc) · 3.64 KB
/
test6a.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
% test6a stands for SFLA_VCO_3stage for Channel Widths , 'T3b.sp' ,with
clc
%clear all
%close all
%% SFLA Parameters
nVars = 3;
minVars = [0.2 0.2 1];
%minVars = [0.2 0.2 1] % for T3b.sp
maxVars = [2 2 50];
%maxVars=[2 2 50]
Smax = 0.45 * (maxVars - minVars);
CostFcn = @test6b;
m = 10;
n = 10;
s = m * n;
q = 5; %5
Ns = 3;%3
Nt = 1;%1
nIter = 10; %1000
nFcnEval = inf;
VTR = 0 ; % -1.65e-4 % Value-to-Reach
%% Initialization
empty_sol.X = zeros(1, nVars);
empty_sol.Cost = inf;
pop = repmat(empty_sol, s, 1);
bestCost = inf;
for ii = 1:s
pop(ii).X = create_random_solution(minVars, maxVars);
pop(ii).Cost = CostFcn(pop(ii).X);
if pop(ii).Cost < bestCost
bestCost = pop(ii).Cost;
end
end
complexes = reshape(1:s, m, n);
Pi = 2*(n+1-(1:n))/(n*(n+1));
%% Main Loop
iIter = 0;
iFcnEval = s;
bestCosts = [];
while iIter < nIter & iFcnEval < nFcnEval & bestCost > VTR
% Sort population
[~, idx] = sort([pop.Cost]);
pop = pop(idx);
bestCost = pop(1).Cost;
disp(bestCost)
bestCosts = [bestCosts bestCost];
Px = pop(1);
% Complex evolution: FLA
for k = 1:m
Ak = pop(complexes(k,:));
for t = 1:Nt
% Select q members from Ak
subc = sort(randsample_w(Pi, q));
B = Ak(subc);
for j = 1:Ns
% Sort B and determine Pb, Pw
[~,idx] = sort([B.Cost]);
B = B(idx);
Pb = B(1);
Pw = B(q);
% Evolve Pw towards Pb
r = evolve_towards(Pw.X, Pb.X, Smax);
if ~is_within(r, minVars, maxVars);
Fr = inf;
else
Fr = CostFcn(r);
iFcnEval = iFcnEval + 1;
end
if Fr < B(q).Cost
B(q).X = r;
B(q).Cost = Fr;
else
% Evolve Pw towards Px
c = evolve_towards(Pw, Px, Smax);
if ~is_within(c, minVars, maxVars)
Fc = inf;
else
Fc = CostFcn(c);
iFcnEval = iFcnEval + 1;
end
if Fc < B(q).Cost
B(q).X = c;
B(q).Cost = Fc;
else
% Create random soluion
z = create_random_solution(minVars, maxVars);
Fz = CostFcn(z);
iFcnEval = iFcnEval + 1;
B(q).X = z;
B(q).Cost = Fz;
end
end
if B(q).Cost < Px.Cost
Px = B(q);
end
end % Ns
end % Nt
% Replace and sort
Ak(subc) = B;
[~, idx] = sort([Ak.Cost]);
Ak = Ak(idx);
end
end % main loop
%plot(bestCosts)
disp(iFcnEval)
figure;
B=zeros(10,1);
B(1)=Ak(10,1).Cost+B(1);
B(2)=Ak(9,1).Cost+B(2);
B(3)=Ak(8,1).Cost+B(3);
B(4)=Ak(7,1).Cost+B(4);
B(5)=Ak(6,1).Cost+B(5);
B(6)=Ak(5,1).Cost+B(6);
B(7)=Ak(4,1).Cost+B(7);
B(8)=Ak(3,1).Cost+B(8);
B(9)=Ak(2,1).Cost+B(9);
B(10)=Ak(1,1).Cost+B(10);
hold on
plot(B,'b','LineWidth',2);
% semilogy(BestCost,'LineWidth',2);
xlabel('Iteration');
ylabel('Best Fitness = Best Dynamic Average Power with SFLA');