-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstruct_statistics.py
144 lines (124 loc) · 5.96 KB
/
struct_statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import ase
import numpy as np
from ase.neighborlist import neighbor_list
'''
These functions are written by C. T. Koch
'''
def computePPDF(struct,binSize=0.3,numBins=20, projectedAxis=None):
'''The function computePPDF will compute the partial pair distribution function for the complete structure.
'''
# First, we want to make sure that the cell has periodic boundary conditions.
unit_cell = struct.get_cell()
pbc = struct.get_pbc()
useMIC = 1
if ~np.all(pbc):
print("This structure does not have all boundaries being periodic (%d %d %d)"%(pbc[0],pbc[1],pbc[2]))
# Next, we must compute the distance of every atom to each other atom, because we then want to generate a
# histogram of those. The function get_all_distances() returns a matrix of the distances between each atom
# every other atom. The parameter 'mic' specifies wether to use the minimum image convention (MIC).
# If we set it to true, then priodic boundary conditions are effectively being used, this means the distance
# of an atom to its nearest image in any of the surrounding identical copies of the simulation box
# is being computed.
if (projectedAxis == None):
dist = struct.get_all_distances(mic=useMIC)
else:
R0 = struct.get_array('positions')
R = np.copy(R0)
R[:,projectedAxis] = 0
struct.set_array('positions', R)
dist = struct.get_all_distances(mic=useMIC)
# copy the original atom positions back into their place:
struct.set_array('positions', R0)
# In order to not include the distance between each atom with itself, we will set the diagonal elements
# of this matrix to -1:
np.fill_diagonal(dist, -1.0)
# Compute a histogram of values in dist, but sorted according to the Z-numbers (in reverse order).
sym = struct.get_chemical_symbols()
Natom = len(sym) # number of atoms = number of symbols
uSym,uZ = extractUniqueSymbols(struct, Z_out=True)
index = np.zeros((Natom,))
for j in range(Natom):
index[j] = uSym.index(sym[j])
# The array 'index' now specifies the position of each chemical symbol in the list of unique symbols.
# For example, if the list of symbols is as follows:
# ['Cu', 'Cu', 'Zr', 'Zr', 'Cu', 'Zr', 'Zr', 'Zr', 'Zr', 'Cu', 'Zr', 'Cu', 'Cu', ...
# the index array will hold the following entries:
# [ 1. 1. 0. 0. 1. 0. 0. 0. 0. 1. 0. 1. 1. ...
# The highest Z-number has the lowest index in this array, because it has the strongest contribution
# to the potential
# Next, we will prepare a matrix of the column index in which
NuSym = len(uSym) # number of unique elements
indexArray = np.zeros((Natom,Natom,2))
indexArray[:,:,0] = np.tile(index.reshape(1, -1),[Natom,1])
indexArray[:,:,1] = np.tile(index.reshape(-1, 1),[1,Natom])
indexArray = np.sort(indexArray,axis=2)
# When creating the index array we will put the Zr-Cu distances in the same histogram as the
# Cu-Zr distances. For this reason we need to subtract from the index of the array those possibilities
# that account for the opposite sequence:
symArray = np.zeros((Natom,Natom),dtype=int)
symArray[:,:] = NuSym*indexArray[:,:,0]+indexArray[:,:,1]-(indexArray[:,:,0]+1)*indexArray[:,:,0]/2
#print(symArray[0:5,0:5])
# Compute the number of different histograms we need:
numHist = np.max(symArray,axis=None)+1
histRange = (0,numBins*binSize)
hist = np.zeros((numBins,numHist))
for combination in range(numHist):
h, hEdge = np.histogram(np.extract(symArray == combination, dist),bins=numBins,range=histRange)
hist[:,combination] = h
# Now, we also want to normalize the positions to the size of the unit cell along the dimension we have
# integrated over:
if (projectedAxis != None):
hist /= unit_cell[projectedAxis,projectedAxis]
distBins = 0.5*(hEdge[1:]+hEdge[0:-1])
return hist, distBins
def compute2DPDF(struct,binSize=0.3,numBins=20,projectedAxis=None):
hist, distBins = computePPDF(struct,binSize=binSize,numBins=numBins,projectedAxis=projectedAxis)
#distBins = 0.5*(histEdges[1:]+histEdges[0:-1])
uSym,uZ = extractUniqueSymbols(struct, Z_out=True)
hist2D = np.zeros((numBins,))
index = 0
for i1 in range(len(uZ)):
for i2 in range(i1,len(uZ)):
hist2D += uZ[i1]*uZ[i2]*hist[:,index]
index += 1
return hist2D
def computeRDF(struct,binSize=0.3,numBins=20):
hist, distBins = computePPDF(struct,binSize,numBins)
rho = density(struct)
dr = distBins[1]-distBins[0]
rhist=np.zeros(np.shape(hist))
for i in np.arange(len(distBins)):
rhist[i]=hist[i]/(rho*4*np.pi*distBins[i]**2*dr)
#rhist2 = [hist[i]/(rho*4*np.pi*distBins[i]**2*dr) for i in np.arange(len(distBins))]
return rhist, distBins
def simpleRDF(struct,numBins=100,rCut=10):
d = neighbor_list('d', struct, rCut)
h, bin_edges = np.histogram(d, bins=numBins, range=(0,d.max()))
rdf = h/(4*np.pi/3*(bin_edges[1:]**3 - bin_edges[:-1]**3)) * struct.get_volume()/len(struct)**2
distBins = 0.5*(bin_edges[1:]+bin_edges[:-1])
return rdf, distBins
def extractUniqueSymbols(struct, elem=True, Z_out=False):
sym = struct.get_chemical_symbols()
Z = struct.get_atomic_numbers()
uniqueSymbols = list(set(sym))
uniqueZ = list(set(Z))
uniqueEl = sorted(uniqueSymbols, key=lambda uniqueZ: uniqueZ, reverse=True)
# Now we want to sort the symbols coording to the Z-numbers in descending order
uniqueZ.sort()
if elem and not Z_out:
return uniqueEl
elif Z_out and not elem:
return uniqueZ
elif Z_out and elem:
return uniqueEl, uniqueZ
else:
print("What the fuck are you doing?")
return 0
def density(struct):
cell = struct.get_cell()
x = cell[:,0]
y = cell[:,1]
z = cell[:,2]
vol = np.dot(np.cross(x,y),z)
n = len(struct.get_chemical_symbols())
return n/vol